Simulating cylindrical modules using ppc

Experiences from simulating WOMs with ppc

Nick Jannis Schmeißer
Bergische Universität Wuppertal

What did I do?

- Simulated WOMs (cylinder) in IceCube Gen2
- Used ppc for photon propagation since I simulated exotic particles
- Developed interim solution to simulate cylindrical modules
\rightarrow could also be used for clsim

Short Introduction - WOM

- „Wavelength shifting optical module"
- Cylindrical module
- Uses wavelength shifter to detect

- Photons are trapped in quartzcylinder and get detected by PMTs
- Light has to pass through different layers

Starting position

- Problems:
- ppc simulates spheres \rightarrow need to develop calculation to decide whether a cylinder is hit by a photon that hits this sphere
- Radius of spheres can be adjusted \rightarrow hard coded and only adjustable for all modules in simulation
- No PhotonSeries in ppc
- Optical properties of standard-DOM are directly implemented in ppc \rightarrow need to adjust some values to simulate other devices
- Simulated Cerenkov-spectrum, since optical effects are calculated later
- Adjusted ppc to get photonSeriesMap

Lightpropagation for the WOM

- Set radius so that cylinder is in sphere
- Use position and direction of photons on sphere to calculate if WOM is hit
- Problem: Photons that hit sphere but not cylinder aren't further simulated
- Turn off properties of DOMs in ppc
- Calculate position, direction and incidence angle of photons on cylinder
- Use this information + wavelength of the photon to decide if photon is collected

Developed code

- Before PhotonSeriesMap was implemented in ppc:
- Sollution that uses MCPESeries and MCTree to identify photons that hit WOM
- With PhotonSeriesMap:
- Iterate over photons, could possibly be also used in clsim
- In ppc:
- Use only Cerenkov-spectrum (wv.dat)
- Deactivate angular sensitivity (as.dat)
- Adapt efficiencies for each module (eff-f2k)
- Developed I3Module for WOM that writes MCPESeries

Optical properties

- Calculate transition T through materials with fresnel-formula depending on incidence angle α
- Calculate different efficiencies depending on wavelength
\rightarrow Overall: use lookup tables to decide if photon is collected, use efficiencies as probability
- Not done in ppc, but could be in the future

Efficiencies

- Efficiencies I used for the WOM (and dependencies from photon):
- Transmission through materials (direction)
- Absorption in materials (direction)
- Absorption from WLS (wavelength)
- PMT QE \& emission from WLS
- Efficiency of photon trap (position)

Outlook

- Simulating spheres and then propagating to elongated module is possible \rightarrow maybe do this directly in propagator?
- But: Photons that don't hit cylinder are lost at the moment
- Would be great if different module-types could be used simultaneously
- Maybe generalize how efficiencies are stored in lookup tables
- Then use global parameter to choose which module-type is used

Backup

Lightpropagation for the WOM - calculation

- Sort out photons with $|z|>\frac{L_{z}}{2}$ because they can't hit the cylinder's surface
- Parameterize path of photon as $g: \vec{x}=\vec{r}+\vec{p} \cdot s$ with position \vec{r} and direction \vec{p}
- Parameterize cylinder as $\left[\vec{c}-\left(\vec{c} \cdot \overrightarrow{e_{z}}\right) \vec{e}_{z}\right]^{2}=R^{2}$
- Hit of photon on cylinder if

$s^{2}+\chi \cdot s+\xi=0$ has a sollution
- Depending on parameters $\chi:=\frac{2\left(p_{x} r_{x}+p_{y} r_{y}\right)}{p_{x}^{2}+p_{y}^{2}} \quad \xi:=\frac{r_{x}^{2}+r_{y}^{2}-R^{2}}{p_{x}^{2}+p_{y}^{2}}$

Lightpropagation for the WOM

$$
\chi:=\frac{2\left(p_{x} r_{x}+p_{y} r_{y}\right)}{p_{x}^{2}+p_{y}^{2}} \quad \xi:=\frac{r_{x}^{2}+r_{y}^{2}-R^{2}}{p_{x}^{2}+p_{y}^{2}}
$$

- No sollution for $\xi>\left(\frac{\chi}{2}\right)^{2}$
- If there is a sollution calculate the position, direction and incidence angle of photon on cylinder
- At the end check $|z|>\frac{L_{z}}{2}$ for the new position of the photon

