

CamSim: Camera Simulations

Woosik Kang on behalf of CamSim team: *Christoph Tönnis, Steven Rodan, Oseong Gwon, Minyeong Seo* in SKKU *Nafis Rezwan Khan Chowdhury, Rebecca Corley, and Carsten Rott* in Utah

Camera systems in the IceCube and IceCube-Upgrade

Woosik Kang CamSim - Camera Simulations

Swedish Camera

Woosik Kang CamSim - Camera Simulations

- Science Goals
 - Observing the ice structures during the deployment and the freeze-in process and other DOMs after the deployment.
 - Long-term monitoring of the ice
- 1-pair of cameras deployed and operated in 2010-2018
- Major observation results
 - Central Bubble Column
 - Contamination settling on top of modules

Camera systems to the IceCube-Upgrade

- IceCube Upgrade Camera system
 - Installed in all new Upgrade OMs (more than 2000 cameras in the detector column)
 - Ice property study in the vicinity of Upgrade OMs: scattering, absorption, anisotropy, …
 - Geometry/Orientation measurements, observing freeze-in process, ...

Woosik Kang CamSim - Camera Simulations

- Swedish Camera 2.0
 - One of the special calibration device modules
 - A steerable camera and a steerable illumination system for one module.
 - Placement of five SweCams in the main "deep ice" region of IceCube and physics region of Upgrade.

Introduction to CamSim

Woosik Kang CamSim - Camera Simulations

Camera Simulations(CamSim)

- Goal of the camera simulation studies
 - To simulate camera images based on light sources in an optical medium (Antarctic ice)
 - To develop the image analysis methods, which will be used on the actual data from the deployed camera systems
- A newly developed simulation framework for the user-friendly environment and the capability of extension to the analysis framework
 - Ready for IceCube-Upgrade deployment immediately to perform the operations and measurements of the camera systems
 - A series of simulation works with the framework studies are in progress.

Photon tracking MCs (PPC)

Woosik Kang CamSim - Camera Simulations

* averaged pixel readout value over 1302 pixels

Reconstructing photon hit events into an image format

Schematic for CamSim

https://github.com/NAPPLSKKU/CamSim

CamSim Structure

Woosik Kang CamSim - Camera Simulations

To be updated

Computing details

- wrapper 'MCRunner' (GTX1080)
- CPU time : ~30 min for reconstruction an image for 10^10 photon bulk ice data via the wrapper 'ImgReco' (i7-6th gen)
- Raw data size: ~1GB for one bulk ice configuration
- Reconstructed image data: ~1.2MB for one camera setting from one simulation configuration

Woosik Kang CamSim - Camera Simulations

• GPU time : ~1 hours for running an bulk ice MC with 10^10 photons via the

Converting number of received photons to the camera pixel readout counts

Woosik Kang CamSim - Camera Simulations

Conversion factor measurements

- To convert photon counts to pixel readout values we have calibrated our simulation to the physical camera
- Three independent methods are used to obtain the conversion factor
 - Observation of LED with the camera
 - LED is placed at large distance for it to be a point source → Has been used
 - Lab measurement with highly attenuated LED signal
 - Observation of stars with the camera
 - Uniformly illuminated surface is observed by camera and radiative flux measured via luxmeter
- \rightarrow Measurements with other methods are underway to determine the systematic uncertainty on the conversion factor

Woosik Kang CamSim - Camera Simulations

Camera calibration

- We have determined this conversion factor for the IceCube Upgrade camera
- Method: Simulate images in air (negligible scattering) and compare with observed images
- Outcome: Obtain weight factor of simulated photon to pixel readout value

Woosik Kang CamSim - Camera Simulations

• For a camera model to be defined, we need a conversion factor of received simulated photons to pixel readout values

<sample image for 1000ms exposure> Measurement plotting for Arducam (100m 1000ms

IceCube Upgrade Camera & LED used for SpiceCore Camera system

<simulation under the same configuration>

Conversion factor calculation

Woosik Kang CamSim - Camera Simulations

sizing area used for air simulation alr SIM lCe SIM Camera oversizing area used for ice simulation

Camera over-

Sum of pixel readout values of the LED image observed in air

Sum of the detected simulated photons in the air simulation

- OM oversizing factor = 5

Woosik Kang CamSim - Camera Simulations

Observing the illumination light from the neighboring string with IceCube Upgrade Camera System (Two D-Egg case)

Woosik Kang CamSim - Camera Simulations

Observing lights from the neighboring string (Bulk ice measurement)

0 5 -Vertical Pixel Number 10 -15 -20 -25 -30 -0

Woosik Kang CamSim - Camera Simulations

Minyeong Seo (undergraduate in SKKU summer research programme)

* averaged pixel readout value over 1302 pixels

260.0

S

Valı

adoi

ſ

ð

Woosik Kang CamSim - Camera Simulations

260.0

- 255.0

- 242.5

240.0

<u></u>

260.0

260.0

Photon Propagation Workshop | October 18th-19th, 2021

Previous analysis results in ICRC2019

- meters assuming few degree LED alignment uncertainty.

Woosik Kang CamSim - Camera Simulations

• Δx^2 -based analysis of the simulated images. Ice properties estimated to less than a few

Likelihood-based analysis are under development, which is expected to improve the results.

Photon Propagation Workshop | October 18th-19th, 2021

PoS(ICRC2019)928

Imaging the Bubble Column with IceCube Upgrade Camera System in two vertically located DOMs (Two mDOM case)

Woosik Kang CamSim - Camera Simulations

Imaging Bubble column in the drill hole (Hole ice measurement)

- Simulation package for Hole ice survey (looking for Bubble Column; BC)
- dL: LED position offset from DOM axis = 28.7 mm
- dH: BC position offsite from DOM axis = 170 mm

• rH: BC radius (below 0.1 * DOM radius = 16.51mm; DOM radius = 165.10 mm) (realistically ~ 0.5 * DOM radius \rightarrow to be simulated as a next step)

1	# ppc	configura	tion f	ile: [.]	follow	stric	t order	below
2	1	<pre># over-R:</pre>	DOM ra	adius	"overs	size"	scaling	facto
3	1.0	<pre># overall</pre>	DOM e	fficie	ency co	orrect	ion	
4	0.35	# 0=HG; 1:	=SAM					
5	0.9	# g= <cos(< th=""><th>theta):</th><th>></th><th></th><th></th><th></th><th></th></cos(<>	theta):	>				
6								
7	130	<pre># directi</pre>	on of r	major	anisot	tropy	axis	
8	<pre>-0.106 # magnitude of major anisotropy coefficient</pre>							
9	0.053	# magnit	ude of	mino	r aniso	otropy	coeffic	cient
10				an in prosin	Alter Alter and a state	an a	o algeographi	
11	0.1	<pre># hole ic</pre>	e radiu	us in	units	of [D	OM radiu	us]
12	0.05	# hole i	ce eff	ective	e scatt	tering	length	[m]
13	100.0	# hole	ice ab	sorpt	ion ler	ngth [m]	
14	0.5 <i>‡</i>	# hole ice	0=HG;	1=SAN	1			
15	0.9	<pre># hole ic</pre>	e g= <co< th=""><th>os(the</th><th>eta)></th><th></th><th>ning in the last in the balance of the</th><th></th></co<>	os(the	eta)>		ning in the last in the balance of the	
					Но	ole ice	e param	eters

Woosik Kang CamSim - Camera Simulations

2.5m

Rebecca Corley (undergraduate in Utah summer research programme)

Photon Propagation Workshop | October 18th-19th, 2021

Previous analysis results in ICRC2019

- Bubble column size estimate for different simulations.
- Advanced analysis is in design phase.

Woosik Kang CamSim - Camera Simulations

Photon Propagation Workshop | October 18th-19th, 2021

PoS(ICRC2019)928

Extensions to the other camera systems

Woosik Kang CamSim - Camera Simulations

SPiceCore Cameras

Gen2 OMs

Woosik Kang CamSim - Camera Simulations

- String-to-string measurement not feasible with Gen2 geometry
- Calibration focus of Gen2 on hole ice measurements
- Bulk ice measurement only possible via sidewise-pointed light sources and cameras on the same string

Imaging Bubble column in the drill hole with mDOM pole camera (potential Gen2 Camera measurement)

Sandbox geometry

Simulation package for mDOM pole camera / Gen2 camera survey

dL: LED position offset from DOM axis (now 28.7 mm)

dH: BC position offsite from DOM axis (now 170 mm)

 rH: BC radius (below 0.1 * DOM radius; DOM radius = 165.10 mm) (realistically ~ 0.5 * DOM radius \rightarrow to be simulated as a next step) configuration file: follow strict order below

	2 1	<pre># over-R: DOM radius "oversize" scaling factor</pre>
	3 1.0	<pre># overall DOM efficiency correction</pre>
	4 0.35	# 0=HG; 1=SAM
	5 0.9	<pre># g=<cos(theta)></cos(theta)></pre>
	6	
	7 130	<pre># direction of major anisotropy axis</pre>
Type	8 -0.10	<pre>06 # magnitude of major anisotropy coefficient k1</pre>
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9 0.053	8 # magnitude of minor anisotropy coefficient k2
1	.0	
1	1 0.1	<pre># hole ice radius in units of [DOM radius]</pre>
am/LED	.2 0.05	<pre># hole ice effective scattering length [m]</pre>
1	.3 100.0) # hole ice absorption length [m]
1	4 0.5	# hole ice 0=HG; 1=SAM
1	.5 0.9	<pre># hole ice g=<cos(theta)></cos(theta)></pre>

Hole ice parameters

Oseong Kwon (undergraduate in SKKU summer research programme)

- 6	×	10 ²
- 4	×	10 ²
- 3	×	10 ²
	- 4	- 6 ×

Expending the CamSim User and Developer base

- New geometries, camera models, and illumination systems can be added
- Currently working with the Swedish Camera team to support implementation of the Sweden Camera 2.0

Woosik Kang CamSim - Camera Simulations

Woosik Kang CamSim - Camera Simulations

More to come

More to come

- Multiple camera behaviour studies on-going for the better understanding
 - Improved camera noise model & light-response
 - Improved photon-to-count conversion
- Simulations in various cases, and optimise the CamSim from the results
 - Geometry and configurations
- Likelihood-based image analysis for both CamSim data and the actual camera images
- Aiming to have the larger statistics + various setting

Current open issues

- plane in hole ice, the interface of hole-bulk ice, ...
- 2. Detailed ray-tracing inside OM to the actual camera lens
- 3. Advanced lens models
- 4. Faster image reconstruction (optimisation)
- 5. Interfacing IceTray
- 6. Using clsim or other photon propagators for CamSim

Woosik Kang CamSim - Camera Simulations

1. How to generate/simulate the sub-structures in the ice such as the fracture

Summary and outlook

- CamSim with new framework is employed.
- Preliminary studies for different measurements are in progress.
 - Larger statistics and various configurations to be simulated.
 - Results reproduced from the previous studies to be used for optimising CamSim
- Likelihood-based image analysis package is ready to use.
 - The methods will be applied to the preliminary results to confirm its functionality
- Hosting the other camera systems for further studies.
- Opportunities to contributes the studies.
- Weekly CamSim call on Wednesday 0900 KST (Tuesday 1700 MDT)
 - Convening by Nafis (Utah PostDoc)

Woosik Kang CamSim - Camera Simulations

Backups

Woosik Kang CamSim - Camera Simulations

Swimming pool tests

A full demonstration of the camera capabilities in an underwater swimming pool test has been performed. (Note: Significant background light was present)

Systematic variations

- LED/laser position in the OM
- LED/laser orientation in the OM
- LED/laser beam width
- LED/laser wavelength
- Camera orientation
- Camera position
- Bubble column size and location (for the hole ice simulations)

