Exotics in photon propagator

Anna Pollmann

... or rather PPC

Ж

BERGISCHE UNIVERSITÄT WUPPERTAL

Categories of exotics

- 1. final states are Standard Model particles, e.g. slow monopoles/Q-balls (< 0.1c)
 - catalysis of proton decay
 - pion cascades along a track
 - fully handled by propagator
- 2. Minor change in light output, e.g.
 - fractionally charged particles: Cherenkov light proportional to charge squared
 - fast monopoles: Cherenkov light varies with speed (along track)
- 3. Major change in light output, e.g. mildly relativistic monopoles (> 0.5c)
 - indirect Cherenkov light varies with speed:
 - photon number and
 - photon emission angle
- 4. New kind of light output: e.g. luminescence / thermal shock waves
 - changes photon number, emission angle, wavelength, and emission time

Categories of exotics

- 1. final states are Standard Model particles, e.g. slow monopoles/Q-balls (< 0.1c)
 - catalysis of proton decay
 - pion cascades along a track
 - fully handled by propagator
- 2. Minor change in light output, e.g.
 - fractionally charged particles: Cherenkov light proportional to charge squared
 - fast monopoles: Cherenkov light varies with speed (along track)
- 3. Major change in light output, e.g. mildly relativistic monopoles (> 0.5c)
 - indirect Cherenkov light varies with speed:
 - photon number and
 - photon emission angle
- New kind of light output: e.g. luminescence / thermal shock waves 4.
 - changes photon number, emission angle, wavelength, and emission time

		-
- 1		
- 2		
۰.		
-		1.1
	_	· · ·

-			-	
-		-		
2				2
С.		×.		
с.	+	-		
5	1		-	
5	-	- 2	-	
	÷.,	-	-	1
۰.,	24	-		
		~		
	- 1	-	-	
10		-	-	1
-	12	-		
	1.	-0	2	
2	22	-	3	
Ξ.		-		
2	-	-		-
	10	-		÷
	-	-		1
-	5-	10		2
-	24	~		-
5	-	10.0		
2		10.0	-	
		~	-	-
	1.4	-	-	-
-	~	-	-	÷
	- 1	-0		
2	-		-	2
		-		-
	24		-	
	2	۰.,	-	-
	-	£.,.		2
-	-	-		-
-	1.	-		
	- 4	•		-
	-	-	-	2
	-	Ξ.	2	-
2	:3			
2	28		÷.	2
	1			2
	- 1	•		÷
-	- 2		-	
	- 14		2	2
	- 4	×.	÷.	2
	- 6		٠	
	1			
	1		4	2
				2
			E.	
			Ľ	

			1	
			1	
			,	
			1	
			•	
		1	•	
			•	
			ł	
		,		
		ſ		
	1	ŝ		

Categories of exotics

- 1. final states are Standard Model particles, e.g. slow monopoles/Q-balls (< 0.1c)
 - catalysis of proton decay
 - pion cascades along a track
 - fully handled by propagator
- 2. Minor change in light output, e.g.
 - fractionally charged particles: Cherenkov light proportional to charge squared
 - fast monopoles: Cherenkov light varies with speed (along track)
- 3. Major change in light output, e.g. mildly relativistic monopoles (> 0.5c)
 - indirect Cherenkov light varies with speed:
 - photon number and
 - photon emission angle
- New kind of light output: e.g. luminescence / thermal shock waves 4.
 - changes photon number, emission angle, wavelength, and emission time

Exotics in PPC - the history

- started with fast monopoles and used these software for all other exotics due to
 - familiarity and
 - existing starting points
- all light emissions are in the trunk version -> knowledge won't get lost
 - exceptions:
 - wavelength dependence of luminescence (soon)
 - thermal shock waves

5

Implementation in PPC - light yield

- fractional charges:
 - charge is given as module parameter
 - treatment as a muon track, but if
 - particle type is found in MCTree => number of photons (yield) is scaled with charge squared [f2k]
- direct Cherenkov light, fast monopoles (first exotics in ppc)
 - copies handling of muon tracks
 - no module parameter needed, reads particle
 type from MCTree
 - scales photon number [i3ppc, f2k] (Frank-Tamm devided by muon ppm, see Dima's talk)

Implementation in PPC - light yield

- indirect Cherenkov light:
 - spline fit of light yield is used for calculation in dependence of speed (includes Dima's muon ppm) [i3ppc]
 - amount of indirect Cherenkov light is given as fraction to direct light [i3ppc]
- luminescence light:
 - yield per energy loss and decay kinetics are given as vector as module parameters
 - yield depends on energy loss which is calculated here [i3ppc]
 - photons added on top of direct and indirect
 Cherenkov light [i3ppc]

Implementation in PPC - emission angle/time

- direct Cherenkov light
 - photons on GPU know particle speed,
 - if speed < 1: cone is sampled with varying angle [pro.cu] -
- indirect Cherenkov light
 - angle chosen as if indirect contribution to muon track: cascade [pro.cu l.470]
 - theoretical emission from predicted cross sections in older branch
- luminescence
 - angle sampled as isotropic emission [pro.cu 463]
 - time sampled from several exponentials -
 - wavelength TBD

Luminescence emission wavelength

Exotics in CLSIM

- no idea!
- best guess on the work load:

 - GEANT knows fast monopoles, but likely with wrong cross-section - GEANT does not know new light channels
 - implementation of some channels could be easy, of other channels it requires lots of work

9

General remarks

- exotics code "weakens" the efficiency of less diverse code
- analysers searching for exotics have tasks on top of usual analysis work:
 - write your own generator, propagator, photon emission parameters
 - important to keep knowledge in order to improve instead of re-invent the wheel

10