

The COSMO experiment

Aims at measuring the isotropic y-distortion of the CMB spectrum

The current state-of-the-art is $|y|<1.5 \cdot 10^{-5}$, from COBE-FIRAS

and TRIS

COSMO forecasted sensitivity: $|y| \sim 10^{-6}$

Site: Concordia station, Antarctica

Image: COSMO collaboration

The COSMO experiment

Differential, cryogenic Martin-Pupplett Fourier Transform Spectrometer (FTS)

2 Focal planes: 18 multimoded feed-horns + KID bolometers

Band: $120-300 \mathrm{GHz}$ (limited by the atmospheric window)

The cryostat can be tilted and a spinning
 wedge mirror performs fast sky scans

The antenna system

Overview of the antenna system

> Array 1 band: $120-180 \mathrm{GHz}$
> Array 2 band: $210-300 \mathrm{GHz}$
$>$ Antennas: smooth-walled feed-horns
$>$ Made in aluminum with CNC milling

$>3 \times 3$ feed-horn arrays
$>$ Multimoded feed-horns instead of traditional
single-mode horns

Multimode propagation principle

Single-mode antenna

Band	Waveguide diameter	\# modes
$120-180 \mathrm{GHz}$	1.47 mm	1
$210-300 \mathrm{GHz}$	1 mm	1

Multi-mode antenna

Band	Waveguide diameter	\# modes
$120-180 \mathrm{GHz}$	4.5 mm	From 10 to 19
$210-300 \mathrm{GHz}$	4 mm	From 23 to 42

A hollow circular waveguide supports TE and TM mode propagation.

Cut-off frequency $\sim 1 / a$

TE11

TE31

TM01

TM21

TE21

TE41

TM11

TE12

TE01

TM02

Multimode propagation advantages

- Multimoded receivers (antenna+detector) have a higher signal-to-noise level: $\frac{S}{N} \sim \sqrt{N_{\text {modes }}}$
- Multimoded antennas can illuminate the cryostat aperture (or telescope) more uniformly than single-mode ones.

The beam pattern $\mathrm{P}(\vartheta, \phi)$ describes the antenna performance, i.e. the angular distribution of emitted/received power in farfield condition.

Multimoded beam pattern are flatter than single-mode ones along the antenna axis.

The antenna design in details

The antenna design is the best trade-off between

- The multimode requirement on the circular waveguide: fixed waveguide diameter
- The mechanical constraint on the antenna aperture: aperture $\leq 24 \mathrm{~mm}$
- The optimization of the antenna directivity inside the cryostat aperture window, seen under $a \approx 17^{\circ}$ angle (f/\# 3.3)

Band	Waveguide diameter
$120-180 \mathrm{GHz}$	4.5 mm
$210-300 \mathrm{GHz}$	4 mm

Aperture window

The low-frequency array
Profile: 4.5 mm circular waveguide + platelet Winston cone

The high-frequency array

Profile: 4 mm circular waveguide + linear profile

Forecasted broadband performance

High-frequency array

Forecasted broadband performance

Low-frequency array

High-frequency array

Forecasted broadband performance

Summary

- The antenna system of COSMO consists of two arrays of nine smooth-walled feedhorns
- The $120-180 \mathrm{GHz}$ array is made of platelet Winston cones
- The $210-300 \mathrm{GHz}$ array is made of linear horns
- The feed-horns are multimoded
- The design is the best trade-off between mechanical and electromagnetic requirements, with side lobes below -15 dB and HPBW (Half Power Beamwidth) between 17° and 26°
- The arrays are made in aluminum through CNC milling

Back-up slides

Multimode propagation principle

A hollow circular waveguide supports TE and TM mode propagation.

TE11

TE31

TM01

TM21

TE21

TE41

TM11

TE12

TE01

TM02

Solving the Helmholtz equation for a TE (or TM) wave and applying transverse boundary conditions shows that each mode $\mathrm{TE}_{\mathrm{m}, \mathrm{n}} / \mathrm{TM}_{\mathrm{m}, \mathrm{n}}$ has a cut-off frequency $f_{c_{\mathrm{m}, \mathrm{n}}}^{\mathrm{TE}}=\frac{p_{\mathrm{n}, \mathrm{m}}^{\prime}}{2 \pi a} c$, where $p_{\mathrm{m}, \mathrm{n}}^{\prime}$ is the n-th root of $J_{\mathrm{m}}^{\prime}(x)=0$

$$
f_{c_{\mathrm{m}, \mathrm{n}}}^{\mathrm{TM}}=\frac{\bar{p}_{\mathrm{n}, \mathrm{~m}}}{2 \pi a} c \text {, where } p_{\mathrm{m}, \mathrm{n}} \text { is the } n \text {-th root of } J_{\mathrm{m}}(x)=0
$$

$$
\begin{aligned}
& \text { If } f<f_{c} \\
& \text { If } f>f_{c}
\end{aligned}
$$

the mode is evanescent the mode propagates

Individual mode beam pattern

Each mode has its own beam pattern. A few examples:

Faffed Directivit Abs (Phi=9)

Farfed Diretivity Abs (Phi=90)

Some beams are symmetric w.r.t. the azimuthal angle ϕ, some are not.

The COSMO antenna profiles

150 GHz array: platelet Winston cone

255 GHz array: linear horn

Mode modification

Mode conversion

Credit: | METHOD FOR CONVERSION OF |
| :--- |
| WAVEGUIDE MODES, MODE-CONVERTING |
| ARRANGEMENT AND ANTENNA |
| ARRANGEMENT |
| Inventor: Ola Forslund, Sundbyberg (SE) |

What I want to do:

FIG. 5a

FIG. 5b

FIG. 2

