A Decade of Astronomy at Dome A

0 0

...

Zhaohui Shang

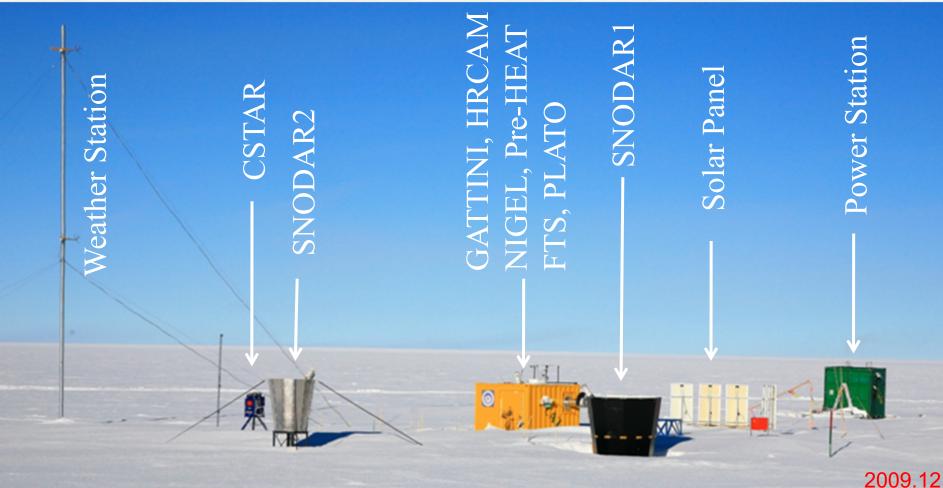
VAOC

п

2021.09.09@SCAR AAA

Traverses to Dome A with Astronomy programs/instruments since 2007

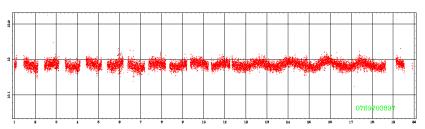
CHINARE & Year	Members ^a	New Facilities & Instruments	
24th (2007/2008)	2	PLATO, CSTAR, Pre-HEAT, Gattini, Snodar, DASLE	
25th (2008/2009)	1	Nigel, Snodar2, SAVER	
26th (2009/2010)	2	FTS, HRCAM, SHABAR	
27th (2010/2011)	2	KLAWS, DIMM, SEU Platform	
28th (2011/2012)	4	AST3-1, PLATO-A, DIMM	
29th (2012/2013)	3	HRCAM2	
30th (2013/2014) ^b	-	-	
31st (2014/2015)	2	AST3-2, KLAWS-2G, NIRSPEC, CSTAR-II	
32nd (2015/2016)	2	Webcams, Wind turbine	
33rd (2016/2017)	4	KLCAM	
34th (2017/2018) ^b	-	-	
35th (2018/2019)	4	KL-DIMM, nKLAWS-2G, KLCAM2, KLCAM3	
		NISBM, MARST, Microthermal	
36th (2019/2020) ^b	-	-	

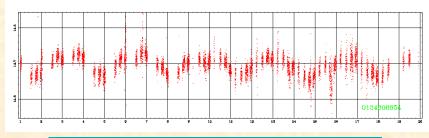

4 milestones, 3 stages

Outline:

Milestones and scientific results
 Site testing results
 THz/sub-mm
 Optical

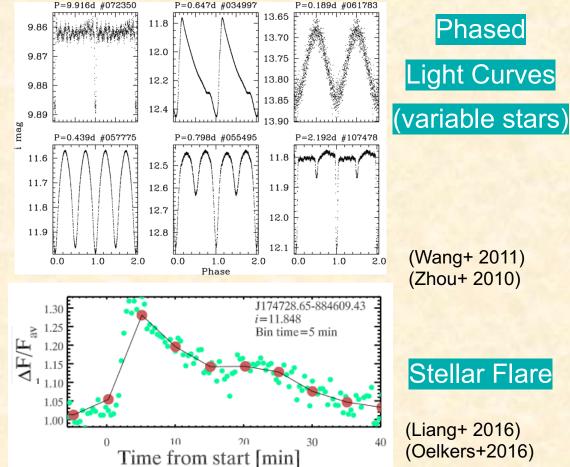
Astronomical Observatory at Dome A: 1st Stage


- Since 24th CHINARE (2007/2008)
- Collaborations: China, Australia and US
- Power and communication by PLATO



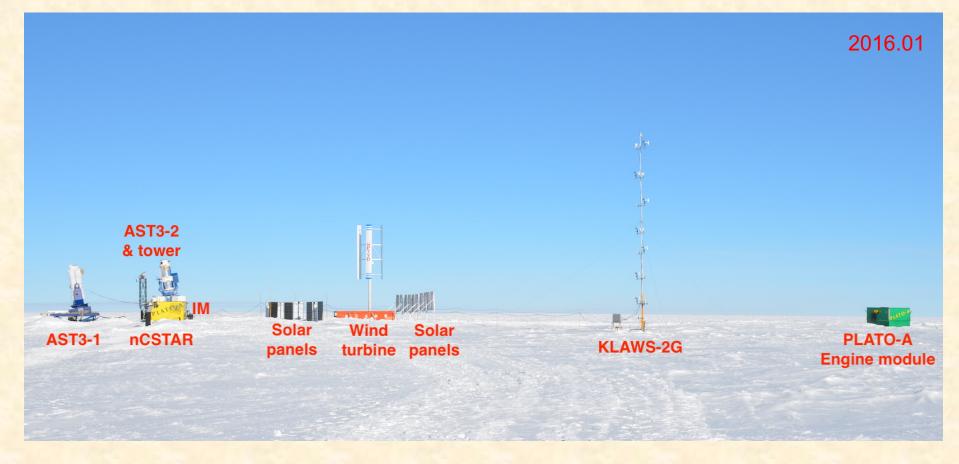
CSTAR (1st generation)

CSTAR:


• Small telescope array (14.5cm x 4)

Light Curves (variable stars)

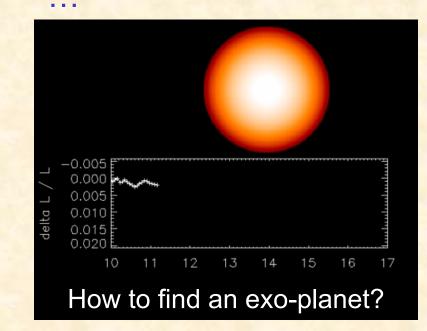
- Field of view: 20 deg² (area of 80 full moons)
- Staring at the south celestial pole for months
- Taking an exposure every 20-30 sec


CSTAR (1st generation)

- Unprecedented data down to i =16 mag (20-30sec exp. time)
- Data realease
 - https://nadc.china-vo.org/data/data/cstar/f
- Over 30 papers on
 Variable stars
 Asteroseismology
 Stellar flares
 ...
 Site testing

Astronomical Observatory at Dome A: 2nd Stage

- 2nd site since 28th CHINARE (2011/2012)
- Collaborations: China and Australia
- Power and communication by PLATO-A



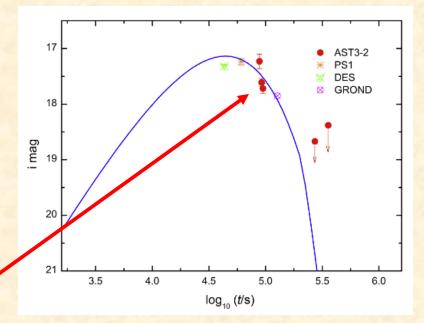
AST3 (2nd generation) Antarctica Survey Telescope

Time-domain astronomy

- Supernovae
- Exo-planets
- GRB
- Gravitational wave objects

AST3:

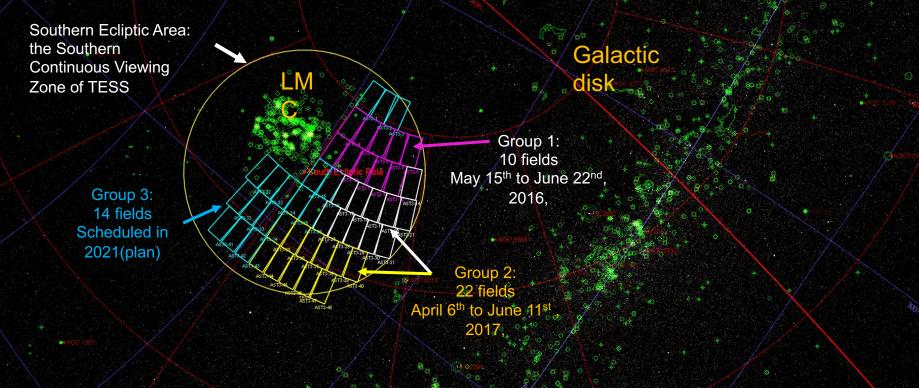
- Survey telescope (50cm x 3)
- Field of view: 4.3 deg² (area of 16 full moons)
- Pointing and tracking


AST3 (2nd generation) Antarctica Survey Telescope

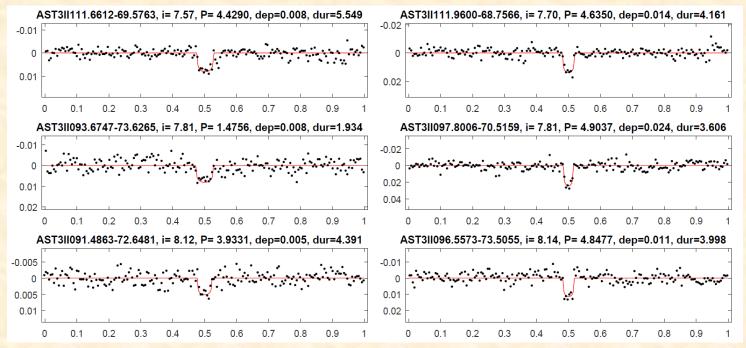
2012 AST3-1 commissioning data

- *i* ~ 18.7 mag (60 sec)
- Variable stars
- Data released on China-VO
 (Ma+ 2018)

2016-2017 AST3-2 data


- SN 2017fbq
- GW170817 optical counterpart
- 20 stellar flares (Liang+ 2020)
- Exoplanet search (CHESPA)

(Andreoni+ 2017) (Hu+ 2017) CHESPA (CHinese Exoplanet Searching Program from Antarctica) by NJU


- Selected fields in planned TESS area
- Non-stop (>1 month) monitoring, before TESS launch
- Cadence: 12 minutes for short period transits
- Sources brighter than i =15mag

fields finished in 2016 and in 2017

CHESPA (CHinese Exoplanet Searching Program from Antarctica) by NJU

- 116 transiting exoplanet candidates
- DR2 (http://casdc.china-vo.org)
 - Over 85000 high precision light-curves $(7.0 \le i \le 15.5)$
 - Over 1000 new variables
 - Over 10 exoplanet candidates that were missed by DR1 and TESS

(Zhang+ 2019)

Site Testing

Astronomical site testing in THz (sub-mm)

THz FTS (Fourier transform spectrometer)

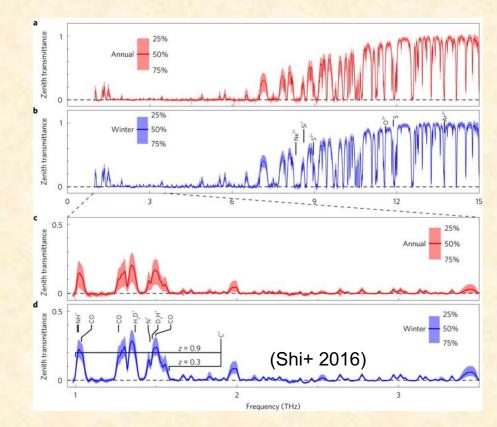
- Install in 2010
- Measure transmission in 0.75-15THz (400 to 20µm)

Pre-HEAT @450 µm

• Installed in 2008

Astronomical site testing in THz (sub-mm)

Pre-HEAT (Yang+ 2010)


• Top 25% PWV ~ 0.1mm

Nigel spectrograph (Sims+ 2012)

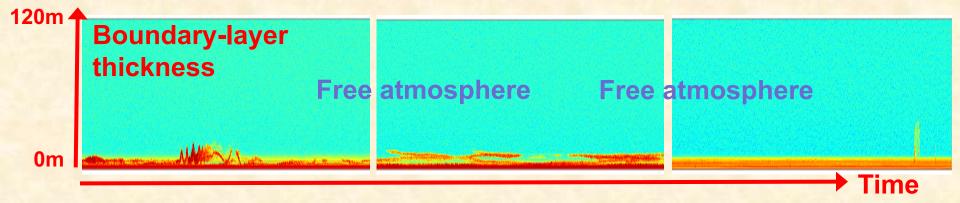
Top 25% PWV ~ 0.09mm

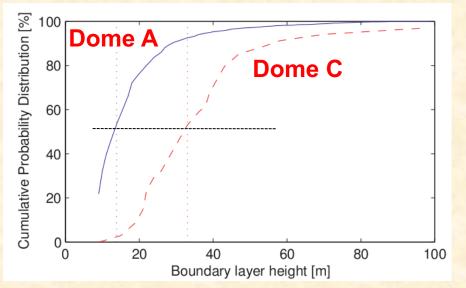
FTS (Shi+ 2016)

- Median PWV: 0.19mm (0.16mm in winter);
- New THz windows on the ground.

Lowest PWV, best site on earth for THz.

Astronomical site testing in optical

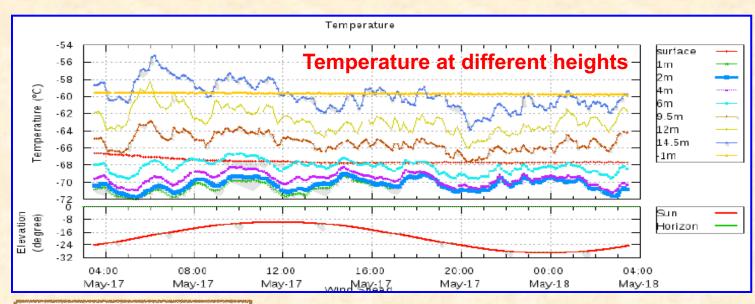

Low sky brightness (*i*-band);
 2008 CSTAR data (Zou+ 2010)

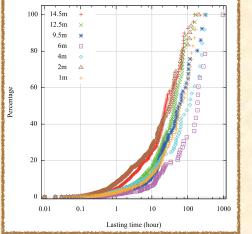

Don	ne A	20.5 (mag/sq. arcsec)	
La Palma	20.10	Cerro Tololo	20.07
Paranal	Paranal 19.93		19.57

 B,V,R sky background comparable to the best sites in Hawaii or northern Chile.
 2009 Gattini data (Yang+ 2010)

Seeing: Very low atmospheric boundary layer

- Simpler atmosphere layers: boundary layer + free atmosphere layer
- Median atmosphere boundary layer (ABL) thickness of 13.9米 (Snodar);
- Strong turbulence within ABL, ABL at temperate sites around 10²-10³ m


Lower than Dome C (30m):


- Easier for construction;
- Good free-atmospheric seeing above ABL.

Snodar data (Bonner+ 2010)

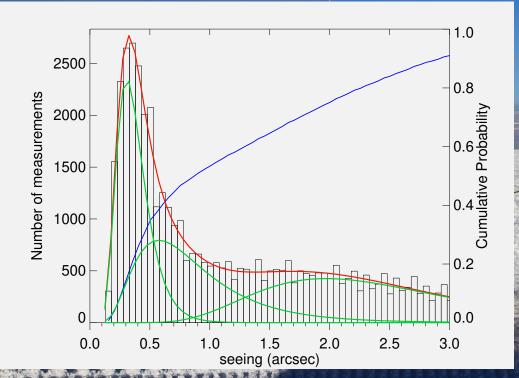
Seeing: Stable atmosphere

• Strong temperature inversion in the atmosphere exists for 70% of the time (2011 data), implying extremely stable atmosphere;

- Temperature inversion (stable atmosphere) lasts long, often more than a week;
- Low wind speed of 1.5m/s 4m/s.
 - KLAWS-2G data (Hu+ 2014, 2019)

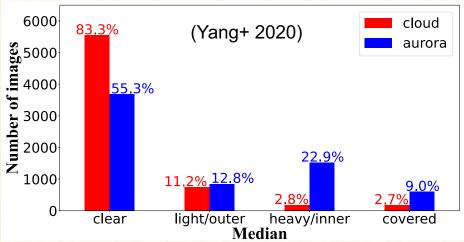
Astronomical Observatory at Dome A: 3rd Stage New Efforts on Site testing (1) Multi-layer AWS (KLAWS-2G) Measure temperature inversion and its relationship with seeing Cloud and Aurora monitor (KLCAM) (2)Statistics on cloud cover and aurora contamination (3) **KL-DIMM** and tower **Direct seeing measurement** To obtain data and quantify the merits of

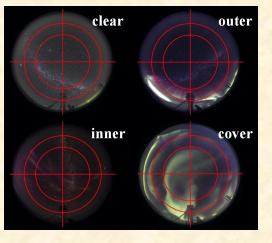
Dome A being an astronomical observatory.

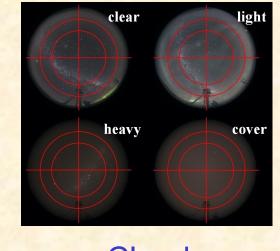

New Site Testing Results at Dome A

KL-DIMMs

8m tower


Ma et al. 2020, Nature, 583


- Median free-atmosphere (FA) seeing: 0.31";
- Chance of FA seeing: 31% @8m, 49%@14m;
- Seeing and boundary layer thickness are correlated with temperature inversion;


Cloud Cover and Aurora

- Visual inspection of all-sky KLCAM images by 5 people independently;
- Data from 2017 & 2018;
- 83% clear (no cloud);
- 55% free of aurora;

Aurora

Cloud

Summary

- Dome A has been revealed to have the best observing conditions in THz and optical (and IR);
- Dome A is good for time-domain research;
- We learned a lot in instrumentation for Antarctica;

Take advantage of the resources !

 For a complete (up to July 2020) review/reference of the 10+ year work at Dome A, please see Shang 2020, RAA (Research in Astronomy and Astrophysics)

Thanks !