Superb Astronomical Seeing at Dome A

Bin MA (SYSU); Zhaohui SHANG; Yi HU; Keliang HU; Yongjiang WANG; Xu YANG (NAOC); Michael C. B. ASHLEY (UNSW); Paul HICKSON (UBC); Peng JIANG (PRIC)

September 8-10, 2021 Virtual Meeting

outline

- 1 Introduction
- 2 KL-DIMM for Dome A
- 3 seeing results from Dome A
- •4 Summary

1 Introduction

- Seeing at the best mid-latitude sites:
 - $\sim 0.6 0.8''$
- Boundary layer in Antarctica: more turbulent but much thinner

Free-atmosphere seeing is possible

• Dome C:

Seeing ~ 0.3" above BL (~30 m)

• Dome F:

~ 0.3" @ 11m was observed during daytime

Dome A (Kunlun Station)

- the highest point (4093 m) in Antarctic plateau
 - BL thickness ~ 14 m by Snodar
 - ≻yet only daytime seeing:
 median 0.8" @ 3 m by
 DIMM (Differential Image Motion Monitor)

2 KL-DIMM for Dome A

- the automatic DIMM for KunLun station (ambient -80℃)
 - >Active thermal control for electronics
 - >Mechanical improvement
 - ≻two KL-DIMMs for redundancy
- Tower: 8 m
 - ≻Logistical limit
 - >BL < 9 m for 25% time

- cold tests: single-part/whole system
 - working/rebooting correctly at -70C
 - ~100W including heaters
- test obs @ Muztagh Ata: seeing precision ~ 10%

low temperature chamber @ NIAOT

- 2 KL-DIMMs were installed at Dome A in 2019
- 2 members from NAOC + help from another 2 astronomers
 + the traverse team
- supported by PLATO-A

operations

- fully automatic observation
- data processing in real-time
- seeing results were sent back every 30 min, and shown in website

working well even t < -75°C

polar misalignment:<0.3 deg in left-right<0.1 deg vertically

3 seeing results from Dome A

- April Aug 2019
- histogram of night-time seeing:
 a sharp peak (<0.5") + a long tail (up to >3")
- log-normal distribution in mid-latitude sites

6000

- the 3 components in the histogram:
 FA, BL & intermediate seeing
- caused by the variation of BL thickness
- at just 8 m, FA seeing was obtained for 31% of the time, when the median was 0.31"
- Snodar: BL < 9 m for 25% time

Note: the measured seeing values were overestimated by up to 10-20% due to the ice on the sub-apertures

Site	DIMM tower height (m)	25% (arcsec)	50% (arcsec)	75% (arcsec)	ε_{FA} (arcsec)	ε _{IN} (arcsec)	ε _{BL} (arcsec)	f _{FA} (%)	f _{IN} (%)	f _{BL} (%)
Dome A	8	0.41	0.89	2.02	0.31	0.57	1.97	31.0	30.1	38.9
Dome C	8	0.83	1.65	2.32	0.33	0.54	1.73	16.2	14.4	69.4
Dome C	20	0.43	0.84	1.55	0.30	0.42	1.17	15.7	29.3	55.0
Mauna Kea	7	0.57	0.75	1.03						
Armazones	7	0.50	0.64	0.86						
La Palma	5	0.62	0.80	1.06						

 the seeing could be improved on a higher tower: more FA seeing, less and smaller BL seeing

Seeing vs. Weather

Dome A Weather data in 2011 BL height in 2010

Seeing vs. Weather

- KLAWS: weather data on multiheights between 0 - 14 m
- simultaneous operations: Jan -March

Seeing changes with:

- Temperature gradient
- Wind speed
- Wind direction

seeing vs weather

temp gradient

• wind speed

• T_8 - T_0 ~ 10 K indicates h_{BL} ~ 8 m

- larger temp gradient => thinner BL
- T_h - T_0 indicates if $h_{BL} < h$
- winter data in 2015:
 50% time when h_{BL}<14 m, consistent with Snodar results

4 Summary

- KL-DIMM: successful operations @ Dome A
- direct measurements prove the seeing @
 Dome A is the best on the ground
- Future work
 - to improve de-icing of KL-DIMM
 - KL-DIMM + KLAWS in the winter
 - to measure C_n²(h) : the optimized height for large telescopes?

acknowledgement

the Chinese Antarctic expedition team Dr Z. Li, F. Du, Z. Hu, T. Song, E. Aristidi and K. Agabi