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the Fermi “Haze/Bubbles”

Dobler, et al., 2010. “The Fermi haze: a gamma-ray 
counterpart to the microwave haze”, ApJ, 717, 2

Fermi gamma-rays

“Detection of the Galactic haze with Planck”
Ade,…, Dobler, et al, 2013. Planck intermediate results-IX. A&A, 554, A139.

Plank microwaves
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The Urban Observatory A Multi-Modal Imaging Platform for the Study of Dynamics in Complex Urban Systems

ENERGY USE,  EFFICIENCY,  ENVIRONMENT,  RESILIENCE,  SUSTAINABILITY

Dobler, et al., 2021. Remote Sensing, 13(8), p.1426.

Remote imaging data is fused with available records 
data via photogrammetric techniques to geo-locate 
patterns of activity and associated anomalies form 
minute to diurnal to weekly to yearly timescales.

www.MUONetwork.org
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The Urban Observatory A Multi-Modal Imaging Platform for the Study of Dynamics in Complex Urban Systems
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what is Machine Learning?
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Dobler’s very broad definition:

machine learning is any process by which a parameter is 
algorithmically determined from data by a computer*

“determine” in this context means that there is some objective metric to be optimized

* if you’ve ever fit a straight line to data you’ve [probably] already executed a machine learning task

advances in machine learning + “the data revolution” → revolutionary shifts in science
& 

society
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Linear Regression in 1D
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In linear regression, we model the 
relationship between a dependent variable 
(y value) and independent variable (x value) 
with a linear function.  For example, 

    yi = m xi + b

In order to “fit” a linear model to data, we 
must define a metric that indicates the 
goodness-of-fit; the sum of squared 
differences (ssd) is typical:

    ssd = ∑i (yi - (m xi + b))2

With multi-linear regression, the dependent 
variable is modeled as a linear combination 
of multiple independent variables,

    yi = a0 + a1 x1,i + a2 x2,i + a3 x3,i + ... 

the Normal Equation



Linear Regression: an Algorithmic Solution

An alternative to the matrix-based solution for determining the best fit parameters 
of a linear model are numerical, algorithmic solutions.

For this framework, we define our metric as either,

                                                     : C = sum of squared differences

                                                     : ℒ = e–C/2

COST (or LOSS) FUNCTION

 
LIKELIHOOD

(potentially weighted by the squared “errors” as in ꭓ2)
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Minimize
or

 

Maximize

But how do we actually find the values for the parameters 
(slope and offset) that minimize the cost function?
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Training a Linear Model with Gradient Descent
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    1. choose initial
    2. update with
    3. repeat step 2 until convergence
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Training a Linear Model with Gradient Descent
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Learning the slope and offset using SGD

Stochastic Gradient Descent (SGD)

1. choose initial values for m and b

2. calculate the LOSS

3. determine the direction of the 
steepest gradient

4. step in that direction

5. go back to step 2

THINGS TO CONSIDER
choosing starting point?
how far to step?
take the step?
when to stop?

https://medium.com/@julian.harris/stochastic-gradient-descent-in-plain-english-9e6c10cdba97
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initialization
learning rate
dealing with local minima
stopping criterion change in loss

use a different random subset of data at each iteration
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the first Machine Learning paradigm: objects and features



Objects and Features
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in ML, the central data paradigm is one in which the data is 
represented by objects each of which has associated features

NF

NO

features: [x,  y,  vx ,  vy ,  radius,  charge, material,  topology]

continuous ordered categorical

in many data analysis tasks in, we consider data 
as a number as a function of another number 
characterizing a system, e.g.:

  brightness of SN Ia vs distance
      characterizing the Universe
  height of the oceans vs time
      characterizing the climate
  velocity of tracer particles vs position
      characterizing fluid flow



Objects and Features
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in ML, the central data paradigm is one in which the data is 
represented by objects each of which has associated features

in many data analysis tasks in, we consider data 
as a number as a function of another number 
characterizing a system, e.g.:

  brightness of SN Ia vs distance
      characterizing the Universe
  height of the oceans vs time
      characterizing the climate
  velocity of tracer particles vs position
      characterizing fluid flow

NF

NO

features: [x0 ,  x1 ,  x2 ,  x3 ,  x4 ,  x5 ,  x6 ,  x7 ,  x8 ,  x9 ,  x10 ,  x11 ]

continuous



Supervised vs Unsupervised Learning
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Machine Learning algorithms broadly can be split into two categories:

supervised learning: algorithm learns parameters from data using 
labeled examples to inform the metric for optimization

unsupervised learning: algorithm learns parameters from data without 
labeled examples of “truth”

supervised unsupervised
pro can generate highly specific, tailored no need for labeled data means that pattern 

models based on domain knowledge recognition happens “automatically”

con requires a large amount of labeled no guarantee that the outputs describe the 
training data, typically done “by hand” data in a useful or relevant way



Common ML Models
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Unsupervised example: K-Means clustering

1. choose k initial cluster centers

2. assign each object to the nearest cluster center

3. update the cluster centers to be the average of 

their assigned population

4. calculate inertia = ∑c ∑j ∈ C |xj - xc|
2

5. IF the inertia has not changed, stop

ELSE go to back to step 2.

6. go back to step 1 choose minimum inertia solution

THINGS TO CONSIDER
how to set k?
choosing starting spot?
optimal solution?
restarting?

number of clusters
initialization
dealing with multiple solutions
re-intializing with fixed k

https://towardsdatascience.com/clustering-using-k-means-algorithm-81da00f156f6



Common ML Models
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Supervised example: Decision-Tree Classifier*

1. for each feature determine the optimal partition 
threshold to minimize the Gini “impurity”, the sum 
of weighted ratios of various classes should the 
data be split into sub-populations

2. split the data into sub-populations according to the 
feature and partition threshold with the minimum 
impurity

3. for each sub-population, for each feature, 
determine the optimal partition threshold to 
minimize impurity should the data be split further

4. split the sub-population into sub-populations 
according to the feature and partition threshold 
with the minimum impurity

5. IF sub-populations are 100% pure, stop
ELSE go to back to step 3.

potentially specify an alternative stopping criterion such as the 
minimum number of samples in a subpopulation

* this implementation assumes all features are continuous numerical
x5 < 114.2 ?

x31 > -7.51?

x156 > 
339.4?

label as 
class A

label as 
class B

.

.

.

.

.

.

ROOT

NODE

LEAF
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the second Machine Learning paradigm: training/testing/validation



Training and Evaluating Models within the ML Paradigm
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Decision trees are an important construct, but 
they tend to suffer from overfitting.*

To understand overfitting, we first need to 
understand model accuracy for supervised 
learning models…

Consider a data set:

the most basic method to train a ML model splits 
the data into two categories,

training data (70–80%)
data on which the model parameters are fit by 
optimizing a metric

testing data (30–20%)
data on which the fit model predicts known 
values of the target

these subsets are NEVER (ever) to be mixed

targetfeatures

train
test * overfitting occurs when the accuracy on the training data 

is significantly higher than the accuracy on the testing data



Training and Evaluating Models within the ML Paradigm
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Things to consider about training/testing sets:

bias – randomize before splitting (and be careful) 
to avoid training on one type of data while 
testing on another

noise – ensure that the noise characteristics 
are similar between the two data sets

balance – the full range of target variables 
should be represented in both training and 
testing sets

One of the most common issues is a subtle 
mixing between training and testing sets leading 
to invalid accuracy assessment.

the most basic method to train a ML model splits 
the data into two categories,

training data (70–80%)
data on which the model parameters are fit by 
optimizing a metric

testing data (30–20%)
data on which the fit model predicts known 
values of the target

these subsets are NEVER (ever) to be mixed



Model Accuracy: training/testing with validation
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Overfitting can arise for many reasons (small 
training sets, too many parameters, strong 
covariance between features, etc.).

There are several model-specific methods to 
tackle over fitting, but a general technique is to 
incorporate a validation process in the training 
of ML models.

K-fold cross-validation

1. split your training and testing set (e.g., 
80/20) and set testing aside.

2. break up training set into K chunks (10 is 
canonical)

3. loop through the K chunks training on the 
remaining K–1 chunks and testing on the 
K-th chunk 

4. modify the hyperparameters and repeat 3

5. once the best model is found, retrain on the 
full training set and apply to testing set for 
final model accuracy.

object features target



Model Accuracy: training/testing with validation

23

K-fold cross-validation

1. split your training and testing set (e.g., 
80/20) and set testing aside.

2. break up training set into K chunks (10 is 
canonical)

3. loop through the K chunks training on the 
remaining K–1 chunks and testing on the 
K-th chunk 

4. modify the hyperparameters and repeat 3

5. once the best model is found, retrain on the 
full training set and apply to testing set for 
final model accuracy.

https://scikit-learn.org/stable/modules/cross_validation.html



Confusion Matrices
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A representation for a classification task 
that indicates the model’s “confusion” 
between outcomes.  The smaller the 
off-diagonal elements, the more effective 
the model at correctly labeling classes.
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8Total # of spheres:
121 + 8 + 14 + 72 = 215

PRECISION:
fraction of objects labeled as a certain class 
that actually are that class, 
pglass = 121 / (121 + 14) = 0.896
pplexi = 72 / (8 + 72) = 0.900

RECALL:
fraction of objects of a certain class that 
are actually labeled as that class,
rglass = 121 / (121 + 8) = 0.938
rplexi = 72 / (14 + 72) = 0.837
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an emerging third Machine Learning paradigm: ethics
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Superresolution

https://medium.com/datadriveninvestor/using-the-super-resolution-convolutional-neural-network-for-image-resto
ration-ff1e8420d846

https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=302666&org
=NSF&from=news https://ieeexplore.ieee.org/abstract/document/8081654
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Superresolution

https://medium.com/datadriveninvestor/using-the-super-resolution-convolutional-neural-network-for-image-resto
ration-ff1e8420d846

PULSE
https://github.com/adamian98/pulse
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Superresolution
When is a model failing?
Why is a model failing?
What are the consequences of failure?
also: metrics?  architecture?  “good” model?  



Machine Learning in Practice
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Tools these days facilitate the rapid creation of machine learning models, 
and you can do machine learning

  – without calculus (or linear algebra or algebra) and/or domain knowledge

  – without training/testing/validation and model selection

  – without considerations of the ethical implications for the models you build

but without all three, you are doing it poorly…



Machine Learning in Practice
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Machine Learning ≠ Data Science ≠ Neural Networks ≠ Artificial Intelligence
“deep” or otherwise
“convolutional” or otherwise



Neural Networks and Deep Learning

31

(almost) all images taken from:
Neural Networks and Deep Learning
Michael Nielsen
http://neuralnetworksanddeeplearning.com/
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Autonomous vehicles – scene awareness and decision making

Healthcare – medical imaging, augmentation of diagnosis

Social media (and tech of all sorts) – advertisement, automatic tagging, follow recommendations, bot identification

Finance – market prediction

Translation – mapping between one language and another

Security and cybersecurity – anomaly detection, situational awareness, intrusion, automatic document digitization

Agriculture – crop yield prediction

Speech to text (and speech recognition) – mapping between audio and free text

Neural Networks in Public Life



Neurons

33

w1

w2
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b

A neuron takes a collection of data as input and 
combines it to generate an output.

The process of combining the data generally starts 
with a linear weighting,

    z = w · x + b

where · is the dot product:

    w · x = w1 x1 + w2 x2 + w3 x3 + … = ∑ wi xi

w is referred to as the weights of the neuron
b is referred to as the bias of the neuron



Neurons and Activation Functions
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A neuron takes a collection of data as input and 
combines it to generate an output.

The process of combining the data generally starts 
with a linear weighting,

    z = w · x + b

where · is the dot product:

    w · x = w1 x1 + w2 x2 + w3 x3 + … = ∑ wi xi

w is referred to as the weights of the neuron
b is referred to as the bias of the neuron

Once z is generated, the final step to 
combine the inputs is the activation 
function,

    output = a(z)

and a can (and will) take many forms.



Multi-Layer Perceptron

35

w1

w2

w3

b

Perceptron

input
layer

hidden
layer

output
layer

Some of the first neural networks were 
multilayer perceptrons (MLPs).



Activation Functions

36

w1

w2

w3

b

Perceptron

input
layer

hidden
layer

output
layer

Sigmoid Activation



Fully-Connected Network
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input
layer

hidden
layer

output
layer

Fully connected networks contain links 
between every neuron in every layer.

The output layer can be a single output 
or multiple output.

note: in this simple example there are 
already 295 parameters! 

BLACK BOX MODELS



Complexity of Interactions in Neural Networks

38BLACK BOX MODELS

x1

x2

w1

w2
w3

w4

w5

w6

b1

b2

b3

b4

w7

w8

w9



Training a Neural Network
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Training models with this many parameters 
requires a lot of care:

  . defining the metric
  . optimization schemes
  . training/validation/testing sets

But just like our simple linear regression 
case, the fact that small changes in the 
parameters leads to small changes in the 
output (for the right activation functions) gives us 
hope!

note: in this simple example there are 
already 295 parameters! 



Training a Neural Network
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training examples
(mini-batches)

learning rate



Training a Neural Network
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training examples
(mini-batches)

Stochastic Gradient Descent

potentially very difficult to compute



Training a Neural Network
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feed data forward through network and calculate cost metric

for each layer, calculate effect of small changes on next layer

Stochastic gradient descent works 
well for learning parameters, but…

how to compute which way is 
“downhill”?

with something like linear regression, 
it is easy to see the effects on the 
model as you change w and b.  With 
multivariate regression it’s a bit more 
tricky since w is wi.

With neural networks we need to be 
able to calculate ∆ak given ∆wij.



Training a Neural Network
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feed data forward through network and calculate cost metric

for each layer, calculate effect of small changes on next layer

1. Randomly choose all w and b

2. Feed a random subset of data 
forward through the network

3. Calculate the output error (cost)

4. Determine which “direction” will 
decrease the cost most efficiently 
by determining the change in cost 
at each layer based on changes in 
parameters at the previous layer

5. Step in that direction

6. Repeat steps 1-5 until convergence

BACKPROPAGATION



Backpropagation
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Quadratic

Cross-entropy



Converting Outputs into Probabilities
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Quadratic

Cross-entropy

In the multi-output case, we 
would like to interpret this 
output layer as a list of 
probabilities of each outcome.

For that, a softmax activation 
is often applied to the output,

which has the properties that
    1.)   0 < yi ≤ 1 for all i
    2.)   ∑ yi = 1
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Convolutional Neural Networks
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Convolutional Neural Networks
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Convolutional Neural Networks
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Convolutional Neural Networks

max-pooling “layers” are a 
special kind of filter that does not 
have w or b (and is not learned)
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Convolutional Neural Networks

Bianchi Pista
http://bikeattack.com
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Convolutional Neural Networks

Bianchi Pista
http://bikeattack.com
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Convolutional Neural Networks

Bianchi Pista
http://bikeattack.com
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Convolutional Neural Networks

Bianchi Pista
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Convolutional Neural Networks

Bianchi Pista
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Convolutional Neural Networks

Bianchi Pista
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Convolutional Neural Networks

Bianchi Pista
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Convolutional Neural Networks

Bianchi Pista
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Convolutional Neural Networks

Bianchi Pista
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Convolutional Neural Networks

Pista

not Pista

w...
w...

w...

w...

w...
w...

b

b
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Convolutional Neural Networks

DEEP CONVOLUTIONAL NEURAL NETWORK (CNN)
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Convolutional Neural Networks

DEEP CONVOLUTIONAL NEURAL NETWORK (CNN)

“AlexNet”
(Krizhevsky, Sutskever, & Hinton, 2012)
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Convolutional Neural Networks

Z
eiler &

 Fergus (2013)


