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The Urban Observatory A Multi-Modal Imaging Platform for the Study of Dynamics in Complex Urban Systems

www.MUONetwork.org
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Dobler, et al., 2021. Remote Sensing, 13(8), p.1426.
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Remote imaging data is fused with available records
data via photogrammetric techniques to geo-locate
patterns of activity and associated anomalies form
minute to diurnal to weekly to yearly timescales.

RESILIENCE, SUSTAINABILITY



The Urban Observatory A Multi-Modal Imaging Platform for the Study of Dynamics in Complex Urban Systems

ENERGY USE, EFFICIENCY, RESILIENCE ENVIRONMENT AND SUSTAINABILITY

Health of the Power Grid: The lights
in UO images at night flicker due to
the 60Hz mains frequency. We can
measure the stability of this frequency
8 to monitor the grid in real time for

il carly warning signs of power outages.
At the same time, on/off changes in the
BN lighting provide estimates for total
energy end use.

Lighting Technology Adoption: The

¥ UO camera systems are capable of
#8 determining the lighting type

l (incandescent, LED, fluorescent, etc.)
for every bulb in our field of view.
This provides information on efficient
technology adoption, change-over
compliance, target of opportunity
identification for lighting upgrades,

B and measures of lighting inefficiencies.

Remote Detection of Air-Borne Pollutants: The UO has developed the
analytic capability of automatically detecting soot plumes ejected from
buildings in near-real time, providing a method for determining the
environmental impacts of energy use in cities, monitoring for compliance, and
providing situational awareness in the event of a disaster or toxic materials
release.

Full Resolution Scan (false color) vegetation pixels

intensity [arb units]

Manhattan Bridge Region

Urban Vegetative Health: [
Using the same technology

wavelength [range: 0.4-1.0 microns]

Dobler, et al., 2021. Remote Sensing, 13(8), p.1426.

Remote Building Thermography: that we have developed to
With the UO’s infrared imaging determine light bulb types
capabilities, we can perform at night, daytime imaging
thermographic studies of 100s of allows us to monitor the

| buildings simultaneously providing health of plants in our field

{ key indicators of thermal of view, correlating with
inefficiencies, energy loss, and local air quality to ensure

| assessment of heating/cooling systems. ~ robust public green spaces.




what is Machine Learning?

Dobler’s very broad definition:

machine learning is any process by which a parameter is
algorithmically determined from data by a computer™

“determine” in this context means that there is some objective metric to be optimized

advances in machine learning + “the data revolution” — revolutionary shifts in science
&
society

* jf you've ever fit a straight line to data you’ve [probably] already executed a machine learning task



Linear Regression in 1D

In linear regression, we model the
relationship between a dependent variable
(y value) and independent variable (x value)
with a linear function. For example,

y value

y,=mx. +b

In order to “fit” a linear model to data, we
must define a metric that indicates the

x value goodness-of-fit; the sum of squared
differences (ssd) is typical:

the Normal Equation ssd = X, (y; - (m x; + b))?

With multi-linear regression, the dependent
y = Pa variable is modeled as a linear combination
of multiple independent variables,

(PTP)_1 ) PT; — Zi Yyi=a,ta; x,;+a,x,; +a;x;; + ...



Linear Regression: an Algorithmic Solution

An alternative to the matrix-based solution for determining the best fit parameters
of a linear model are numerical, algorithmic solutions.

For this framework, we define our metric as either,

Minimize COST (or LOSS) FUNCTION: C = sum of squared differences
(potentially weighted by the squared “errors” as in [J2)
or

Maximize LIKELIHOOD: £ = e ¢/2

But how do we actually find the values for the parameters
(slope and offset) that minimize the cost function?

y value

X value



cost

Training a Linear Model with Gradient Descent
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cost

Training a Linear Model with Gradient Descent
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Learning the slope and offset using SGD

Stochastic Gradient Descent (SGD) use a different random subset of data at each iteration

|

. choose initial values for m and b

https://medium.com/@julian.harris/stochastic-gradient-descent-in-plain-english-9e6¢c10cdba97

2. calculate the LOSS

3. determine the direction of the G rad Ient Descent

steepest gradient
4. step in that direction

5. go back to step 2

THINGS TO CONSIDER
choosing starting point? initialization

how far to step? learning rate

take the step? dealing with local minima

when to stop? stopping criterion change in loss




the first Machine Learning paradigm: objects and features

13



Objects and Features

in many data analysis tasks in, we consider data
as a number as a function of another number
characterizing a system, e.g.:

brightness of SN Ia vs distance
characterizing the Universe

height of the oceans vs time
characterizing the climate

velocity of tracer particles vs position
characterizing fluid flow

in ML, the central data paradigm is one in which the data is
represented by objects each of which has associated features

N.

\/

features: [x, y, v , v,/ radius, charge, material, topology]

. . 14
continuous ordered categorical



Objects and Features

in many data analysis tasks in, we consider data
as a number as a function of another number
characterizing a system, e.g.:

brightness of SN Ia vs distance
characterizing the Universe

height of the oceans vs time
characterizing the climate

velocity of tracer particles vs position
characterizing fluid flow

in ML, the central data paradigm is one in which the data is
represented by objects each of which has associated features

N.

\/

features: [x,, X,, X,, X3, X,; X5, Xg; X,; Xg; Xg; Xy0r Xq;1

) 15
continuous



Supervised vs Unsupervised Learning

Machine Learning algorithms broadly can be split into two categories:

supervised learning: algorithm learns parameters from data using
labeled examples to inform the metric for optimization

unsupervised learning: algorithm learns parameters from data without
labeled examples of “truth”

supervised unsupervised

pro can generate highly specific, tailored no need for labeled data means that pattern
models based on domain knowledge recognition happens “automatically”

con requires a large amount of labeled no guarantee that the outputs describe the
training data, typically done “by hand” | data in a useful or relevant way

16



Common ML Models

Unsupervised example: K-Means clustering

1. choose k initial cluster centers
2. assign each object to the nearest cluster center
3. update the cluster centers to be the average of
their assigned population
4. calculate inertia = 3 3, _ . Ix; - x_|?
5. IF the inertia has not changed, stop
ELSE go to back to step 2.

6. go back to step 1 choose minimum inertia solution

THINGS TO CONSIDER
how to set k? number of clusters

choosing starting spot? initialization

optimal solution? dealing with multiple solutions
restarting? re-intializing with fixed k

https://towardsdatascience.com/clustering-using-k-means-algorithm-81da00f156f6

17



Common ML Models

Supervised example: Decision-Tree Classifier”
* this implementation assumes all features are continuous numerical

1.

for each feature determine the optimal partition
threshold to minimize the Gini “impurity”, the sum
of weighted ratios of various classes should the
data be split into sub-populations

split the data into sub-populations according to the
feature and partition threshold with the minimum
impurity

for each sub-population, for each feature,
determine the optimal partition threshold to
minimize impurity should the data be split further

split the sub-population into sub-populations
according to the feature and partition threshold
with the minimum impurity

IF sub-populations are 100% pdre, stop
ELSE go to back to step 3.

potentially specify an alternative stopping criterion such as the
minimum number of samples in a subpopulation

ROOT

X < 114.27?

RN

NODE

X3, > -7.51?

D

LEAF

label as
class B

label as
class A

18



the second Machine Learning paradigm: training/testing/validation

19



Training and Evaluating Models within the ML Paradigm

Decision trees are an important construct, but

they tend to suffer from overfitting.”

To understand overfitting, we first need to
understand model accuracy for supervised
learning models...

Consider a data set:

features target

uieJy

159}

the most basic method to train a ML model splits
the data into two categories,

training data (70-80%)
data on which the model parameters are fit by
optimizing a metric

testing data (30-20%)

data on which the fit model predicts known
values of the target

these subsets are NEVER (ever) to be mixed

* overfitting occurs when the accuracy on the training data
is significantly higher than the accuracy on the testing data 20




Training and Evaluating Models within the ML Paradigm

Things to consider about training/testing sets:

bias - randomize before splitting (and be careful)
to avoid training on one type of data while
testing on another

noise - ensure that the noise characteristics
are similar between the two data sets

balance - the full range of target variables
should be represented in both training and
testing sets

One of the most common issues is a subtle
mixing between training and testing sets leading
to invalid accuracy assessment.

the most basic method to train a ML model splits
the data into two categories,

training data (70-80%)
data on which the model parameters are fit by
optimizing a metric

testing data (30-20%)

data on which the fit model predicts known
values of the target

these subsets are NEVER (ever) to be mixed

21




Model Accuracy: training/testing with validation

Overfitting can arise for many reasons (small
training sets, too many parameters, strong
covariance between features, etc.).

There are several model-specific methods to
tackle over fitting, but a general technique is to
incorporate a validation process in the training
of ML models.

object features target

K-fold cross-validation

1.

split your training and testing set (e.g.,
80/20) and set testing aside.

. break up training set into K chunks (10 is

canonical)

. loop through the K chunks training on the

remaining K-1 chunks and testing on the
K-th chunk

. modify the hyperparameters and repeat 3

. once the best model is found, retrain on the

full training set and apply to testing set for
final model accuracy.

22



Model Accuracy: training/testing with validation

Split 1
Split 2
Split 3
Split 4

Split 5

All Data

Training data

Test data

> Finding Parameters

| Fold1 || Fold2 || Fold3 || Fold4 || Fold5 |
| Fold1 || Fold2 || Fold3 | Fold4 | Folds
| Fold1 || Fold2 | Fold3 | Fold4 | Folds
| Fold1 || Fold2 || Fold3 | Folda | Fold5
| Fold1 || Fold2 || Fold3 || Fold4 | Folds
| Fold1 || Fold2 || Fold3 || Fold4 || Fold5 |/

Final evaluation {

Test data

https://scikit-learn.org/stable/modules/cross_validation.htm!

K-fold cross-validation

1. split your training and testing set (e.g.,
80/20) and set testing aside.

2. break up training set into K chunks (10 is
canonical)

3. loop through the K chunks training on the
remaining K-1 chunks and testing on the
K-th chunk

4. modify the hyperparameters and repeat 3

5. once the best model is found, retrain on the
full training set and apply to testing set for
final model accuracy.

23



Confusion Matrices

A representation for a classification task
that indicates the model’s “confusion”
between outcomes. The smaller the
off-diagonal elements, the more effective
the model at correctly labeling classes.

Total # of spheres:
121 + 8+ 14 + 72 = 215

PRECISION:
fraction of objects labeled as a certain class
that actually are that class,

Pyiass = 121/ (121 + 14) = 0.896
Poien = 72/ (8 + 72) = 0.900

RECALL:
fraction of objects of a certain class that
are actually labeled as that class,

r.__=121/(121 + 8) = 0.938

glass

r._=72/(14 + 72) = 0.837

plexi

Actual

glass

plexiglass

glass

Predicted

plexiglass

24



an emerging third Machine Learning paradigm: ethics

25



Superresolution

56 5x5 filters 12 1x1 filters 12 3x3 filters 56 1x1 filters 1 9x9 filter

— — — — —

4Sd

Convolution Convolution Convolution Convolution Deconvolution
Input (LR)

+ ReLU + RelLU + RelLU + RelLU

https://medium.com/datadriveninvestor/using-the-super-resolution-convolutional-neural-network-for-image-resto
ration-ff1e8420d846

y S 0 &5

https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=302666&org
=NSF&from=news https://ieeexplore.ieee.org/abstract/document/8081654



Superresolution

56 5x5 filters 12 7x7 filters H 12 3x3 filters M ﬂ 56 1x1 filters 1 9x9 filter
— — — i — —

Convolution

Convolution
+ RelLU

Convolution
+ RelLU

Convolution
+ RelLU

| Deconvolution l

https://medium.com/datadriveninvestor/using-the-super-resolution-convolutional-neural-network-for-image-resto

ration-ff1e8420d846

PULSE
https://github.com/adamian98/pulse

Input Image

27



Superresolution

& ERobert Osazuwa NessBEl@ @osazuwa - Jun 20

An image of getting upsampled into a white guy is
floating around because it illustrates racial bias in

Just in case you think it isn't real, it is, | got the code working locally. Here

is me, and here is

750 10DO

When is a model failing?

Why is a model failing?

What are the consequences of failure?

also: metrics? architecture? “good” model?

9 &/BERobert Osazuwa NessBl@ @osazuwa - Jun 20

Here is my wife ©

s 227 Q 11K

&/ ElRobert Osazuwa NessE @ @osazuwa - Jun 20
This is

Lucy Liu

28



Machine Learning in Practice
Tools these days facilitate the rapid creation of machine learning models,
and you can do machine learning
— without calculus (or linear algebra or algebra) and/or domain knowledge
- without training/testing/validation and model selection

- without considerations of the ethical implications for the models you build

but without all three, you are doing it poorly...

events = pd.read csv("icetop event detections.csv")[::100].dropna()

dtr = DecisionTreeRegressor(min samples leaf=1)
dtr.fit(events[events.columns[2:326]], events["primary energy"])

acc = r2 score(events["primary energy"], dtr.predict(events[events.columns[2:326]]))
print("accuracy : {0:.3f}".format(acc))




Machine Learning in Practice

Machine Learning # Data Science # Neural Networks # Artificial Intelligence

“deep” or otherwise
“convolutional” or otherwise

scikit-learn
algorithm cheat-sheet

classification
regression
NOT do you!
nnnnnn few features
les

should be
important

clustering

dimensionality
reduction

30



Neural Networks and Deep Learning

I

T2 m » output

€Ty

(almost) all images taken from:

Neural Networks and Deep Learning
Michael Nielsen
http://neuralnetworksanddeeplearning.com/

31



Neural Networks in Public Life

I

T2 >/\ » output

€Ty

Autonomous vehicles - scene awareness and decision making

Healthcare - medical imaging, augmentation of diagnosis

Social media (and tech of all sorts) — advertisement, automatic tagging, follow recommendations, bot identification
Finance - market prediction

Translation - mapping between one language and another

Security and cybersecurity - anomaly detection, situational awareness, intrusion, automatic document digitization
Agriculture - crop yield prediction

Speech to text (and speech recognition) — mapping between audio and free text
32



Neurons

2 2 b » output
w/\/

A neuron takes a collection of data as input and
combines it to generate an output.

The process of combining the data generally starts
with a linear weighting,

Z=w-x+b
where - is the dot product:
w-x=w1x1+w2x2+w3x3+...=Zwixi

w is referred to as the weights of the neuron
b is referred to as the bias of the neuron

33



Neurons and Activation Functions

2 » output
W/\/

Once z is generated, the final step to
combine the inputs is the activation
function,

output = a(z)

and a can (and will) take many forms.

A neuron takes a collection of data as input and
combines it to generate an output.

The process of combining the data generally starts
with a linear weighting,

Z=w-x+b
where - is the dot product:
w-x=w1x1+w2x2+w3x3+...=Zwixi

w is referred to as the weights of the neuron
b is referred to as the bias of the neuron

34



Multi-Layer Perceptron

r'1

i

i
T2 /3\b/ » output
r3 W3

Some of the first neural networks were
multilayer perceptrons (MLPs).

input hidden output
layer layer layer

output

Perceptron output = 0 ifw-x+b<0
1 ifw-x+b>0

0.8

0.6

0.4 -

0.2+

0.0 T T T T T T T T

35



Activation Functions input  hidden  output

layer layer layer
L1
Rt
iy
To b output
/\J output
vy~ W
. . . . 1 0 ifw-x+b<0
Sigmoid Activation 6(z) = —— Perceptron output = i -
14+ e= 1 ifw-x+b>0
1.0 10—
0.8 - 0.8 -
0.6 0.6 -
0.4 0.4
0.2 0.2
0.0 T T T T T T T T T 1 0.0 T T T T T T T T 1
-4 -3 -2 -1 0 1 2 3 4 4 3 2 1 0 1 2 3 4




output

Fully connected networks contain links
The output layer can be a single output

-
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S 3 v
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c
o
59 2
Q > +J
£ Q
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output layer

AN

Wi

-

input layer
(784 neurons)

Fully-Connected Network

or multiple output.

\

SRR A

SNN
1//&”/

in this simple example there are

already 295 parameters!

note

- 7 R
He@ @ Ao/wm&o,«_c«s@c DL DD
IH - ..,:‘:; /r, .v/l / / / 0 o £ / A\\\,, ...\\4::.\\..4“.‘..,
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Complexity of Interactions in Neural Networks

BLACK BOX MODELS

output =

® S
Il Il

S
|

output =

1

1+e—bl)701—w8 O7—wgO3—by
1

14+e—wi1X1—w4xp—by

1

1+e—w2x1 —w5x2—b2

1

14e~W3x1—wexp—b3
1

& ws

)

l14e l+e W1X1~Waxa—by 1 —wyxi—wsxy—by |, ~w3x;-wex3—b3
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Training a Neu ral Network small change in any weight (or bias)

input layer

(784 neurons)

note: in this simple example there are

causes a small change in the output

hidden layer w + Aw

(n = 15 neurons)

output+Aoutput

ik
i
(7

b

/ L7 ), '!
AT .‘0

Wil
At

X
L)
WAL
)
0

v

X3

et

Training models with this many parameters
requires a lot of care:

S S

. defining the metric
. optimization schemes
. training/validation/testing sets

But just like our simple linear regression
case, the fact that small changes in the

parameters leads to small changes in the
output (for the right activation functions) gives us

already 295 parameters! hope!
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Training a Neural Network

1
Clw, b) = =~ ) Ily(x) - al|*

training examples

1w (mini-batches)
T2 a=o(z)
T3

learning rate
Wi = W = Wy —@—

bl—>b —bl— a_bl

small change in any weight (or bias)

causes a small change in the output

w 4+ Aw
output+Aoutput
0 output 0 output
Aoutput ~ Z = ()bp Ab
Wj

40



Tra i n i n g a N e u ra I N etWO r k small change in any weight (or bias)

causes a small change in the output

w 4+ Aw

1
Clw, b) = =~ ) Ily(x) - al|*

training examples
1w (mini-batches)

output+Aoutput

a=o(z)

d output 0 output
- Aoutput ~ w; + Ab
3 ZJ: ow; ! ob
"
Wi = Wi = Wy — —
m Stochastic Gradient Descent
"
by > by =b—— )
m =

potentially very difficult to compute 41




Training a Neural Network

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

— — n —. —
= S~ ——
- 3 = = output layer
: p—
S > :
5
— N S\ W Za e\
- A

feed data forward through network and calculate cost metric
|

for each layer, calculate effect of small changes on next layer
<7

Stochastic gradient descent works
well for learning parameters, but...

how to compute which way is
“downhill”?

with something like linear regression,
it is easy to see the effects on the
model as you change w and b. With
multivariate regression it’s a bit more
tricky since w is w..

With neural networks we need to be
able to calculate Aa, given Awg.

42



Training a Neural Network

hidden layer 1

input layer

hidden layer 2 hidden laver 3

i
(7P

N
A

s P

./

e

& &
Poa g
A
ZE i £
» B s
LK R
s

% .!‘L
oot X

S

9«".,6’.-»
(ole
8

=0
NSy
= ,‘j;_

feed data forward through network and calculate cost metric

for each layer, calculate effect of small changes on next layer

<

Randomly choose all w and b

Feed a random subset of data
forward through the network

Calculate the output error (cost)

Determine which “direction” will
decrease the cost most efficiently
by determining the change in cost
at each layer based on changes in
parameters at the previous layer

Step in that direction

Repeat steps 1-5 until convergence

BACKPROPAGATION 43



Backpropagation

small change in any weight (or bias)

causes a small change in the output

1
C(w,b) = > Z ly(x) — a||* Quadratic vt B

1 tput+Aoutput
C=—— Z [ylna + (1 — y) In(1 — a)] Cross-entropy output-+A
n X

1. Input x: Set the corresponding activation a! for the input

(5L = Va, C ® O'I ( z L ) layer.

2. Feedforward: For each [ = 2,3, ..., L compute 7! = wla"~! + b’

3 4 ° b A N l d ) l = l

51 — (('11,?1+1)T(5'+1) oY, (31) and d = 6(2).
3. Output error §-: Compute the vector §* = V,C © ¢’(z%).
oC __ sl
ot C J 4. Backpropagate the error: Foreach/=L-1,L-2,...,2
g compute § = (WHHT6+) © 6/(2h).

ocC _ _1-1 Sl 5. Output: The gradient of the cost function is given by
=T — a k 0.
0 Wy - J 2 = g7'sland L = 4.

1
()W.rk

a = 44




Converting Outputs into Probabilities

1
Cw,b) = = > Iy(x) — all® Quadratic

1
C=—— Z [ylna + (1 — y)In(1 — a)] Cross-entropy
n

X

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

N

- ---——'— - > ---'\

e S o

output layer

In the multi-output case, we
would like to interpret this
output layer as a list of
probabilities of each outcome.

For that, a softmax activation
is often applied to the output,

N e’
a; @ N

20 €7

which has the properties that
1.) O<y;=1foralli

2.) 2y, =1

45



Convolutional Neural Networks

input neurons
000000000000000 first hidden layer

D000 CATaaaa DCOCO0O0QC000Q0C000000000C
------ 00000000000000000000000C
> 0000000000000 0000000000QC
0000000 (o]} 000000 0000C
Q0000000 0000000000000 0000000000Q
0000000 0000000000000 00000000C
00000000 0000000000000 0000000000QC
0000000 0000000000000 0000000000C
0000000 0000000000000 000000000C
0000000 0000000000000 000000000C
00000000 Q0000000000000 000000000Q
0000000 0000000000000 000000000C
0000000 Q0000000000000 000000000Q
0000000 0000000000000 0000000000C
Q000000 OOOOOOOOOOOOOOOOOOOOOOOO
0000000 000000
00000000 000000000000000000000000
0000C00 0000000 0000000
Q000000 000000000000000000000000
0000C00 0000000000000 0000000000C
Q000000 0000000000000 0000000000Q
C000C00C 0000000000000 00C00C00000C
Q0000000 0000000000000 0000000000C
0000C000 000000000000000000000000
Q0000000
0000000000 C0C0000C000000C00000
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Convolutional Neural Networks

input neurons

0999904 00000000000000 first hidden layer
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