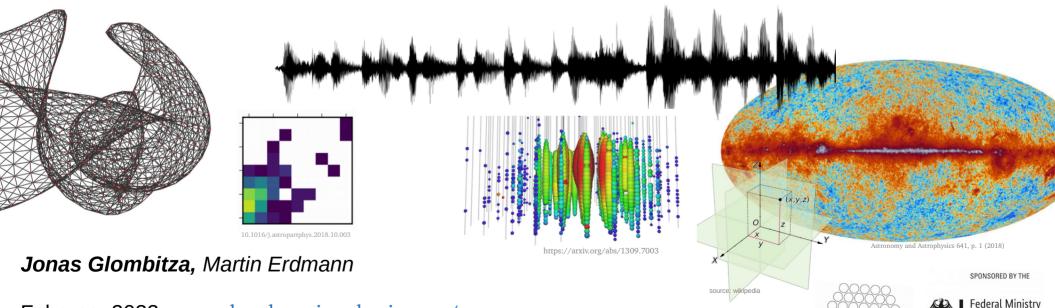


Deep learning for astroparticle physics



of Education and Research

February 2022, www.deeplearningphysics.org/

Workshop on Machine Learning for Cosmic-Ray Air Showers, Delaware

Deep Learning

- field driven by computer science (BigTechs)
- major improvements in:
 - speech recognition, NLP
 - pattern recognition, CV
- (usually) requires huge amounts of data

Deep learning for physics research

Glombitza | RWTH Aachen | 02/02/22 | Workshop Machine Learning for Cosmic-Ray Air Showers, Delaware

Machine Learning and Deep Learning

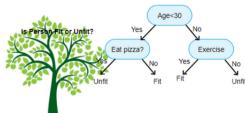
Machine Learning

- applications across many physics domains, e.g., for (background rejection, multi-class classifications)
- BDTs, random forest, shallow NNs

KÜNSTLICHE INTELLIGENZ

Schlau in zwei Stunden

AKTUALISIERT AM 27.09.2017 ARMBRUSTER www.faz.ne



At last - a computer program

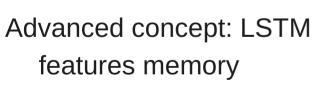
© natur

Deep Learning: RNNs & CNNs

Recurrent Networks (RNNs)

 $h^{(t)} = A(h^{(t-1)}, x^{(t)})$

- analyze sequential data (translation)
- recurrent definition of transformation



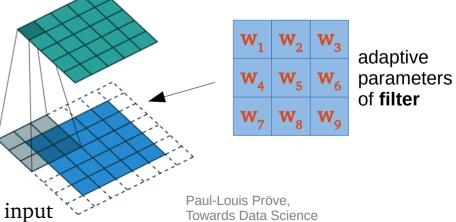
long-range correlations

input

Deep learning for physics research https://colah.github.io/

Convolutional Networks (CNNs)

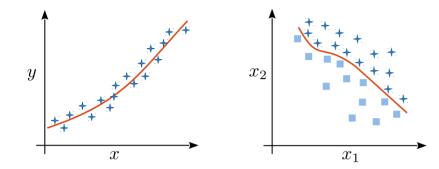
- filter exploits image-like data
 - features translational invariance
 - prior on local correlations
 - fast on GPUs
 - (# param. independent of input size)
 output



Glombitza | RWTH Aachen | 02/02/22 | Workshop Machine Learning for Cosmic-Ray Air Showers, Delaware

output

Applications in Physics Research



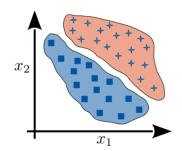
I. Supervised learning

Object reconstruction

- classification
- inference of variables
- de-noising
- reconstruction of complex structures (e.g., tracks)

II. Unsupervised learning

- embedding / clustering
- generative models
- domain adaption



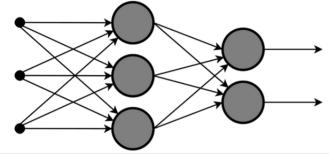
III. Reinforcement learning

• first progress: sorting, tracking

Deep learning for physics research

From Classic Machine Learning to Deep Learning

- Air shower signals measured by surface detectors
 - disentangle muonic and em part at station level



Traditional ML approach

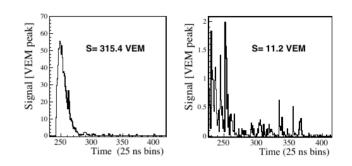
- Extract <u>fraction</u> of muons measured by single station
- Feed physicist observables into a neural network

A. Gulillen et al.,

10.1016/j.astropartphys.2019.03.001

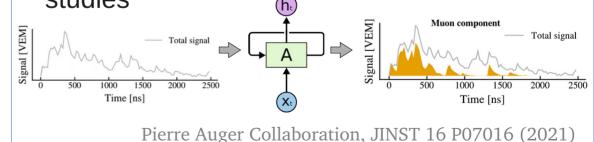
Deep learning for physics research

Glombitza | RWTH Aachen | 02/02/22 | Workshop Machine Learning for Cosmic-Ray Air Showers, Delaware



Deep learning version

- Use RNN to extract <u>time-dependent</u> <u>signals</u> induced by muons
- Promising results for mass composition studies



Denoising of Signal Traces (1D)

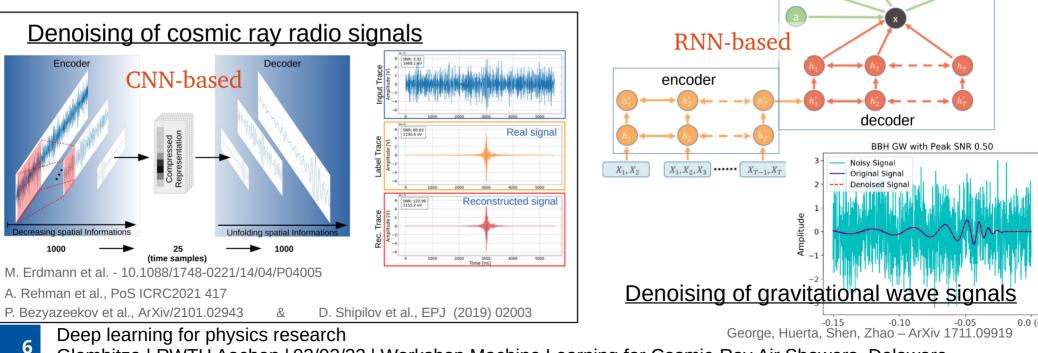
RWTHAACHEN UNIVERSITY

.....

Supervised training of denoising autoencoders

- feature compressed space in between encoder and decoder
- encodes only relevant information in compressed space

Future application: brining ML close to the sensor



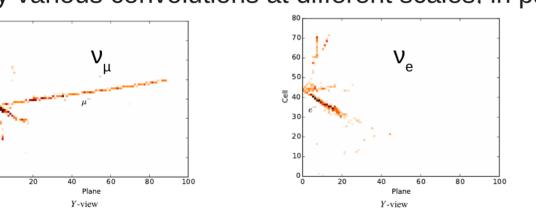
Electron Neutrino Identification at NovA

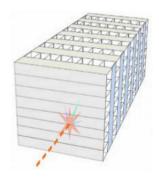
- First CNN application in physics at detector level
 - classification of neutrino type using image-like data
 - input: 2D projection of 3D detector
- Based on inception modules
 - apply various convolutions at different scales. in parallel

• At same purity, efficiency increased significantly (v_e CC) 35% (physicist algorithms) \rightarrow 49% (CNN)

Deep learning for physics research

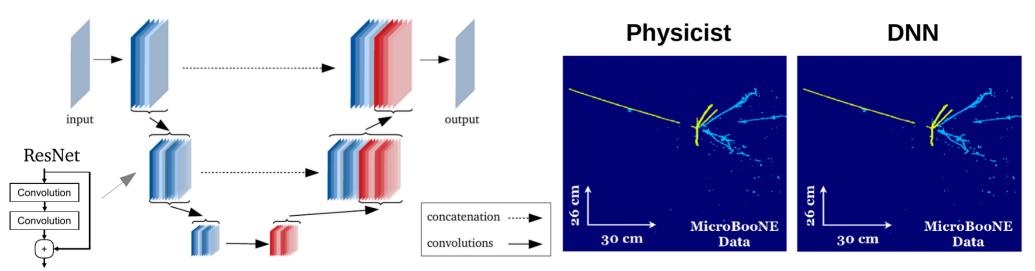
A. Aurisano et al., JINST 11 (2016) P09001





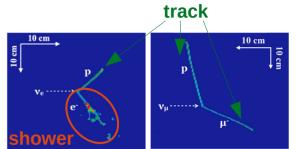
Segmentation - MircroBooNE

- Liquid Argon TPC for neutrino detection
- Segmentation (pixel-wise class prediction) into tracks and electromagnetic-showers
 - Architecture: combination of ResNet and U-Net
- Incorrectly classified pixel fraction per image ~ few percent



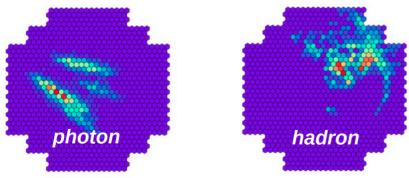
Deep learning for physics research

Adams et al. ArXiv: 1808.07269



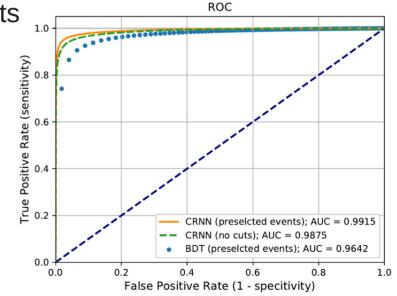
Classification: H.E.S.S.

- Gamma ray telescopes in Namibia
 - background rejection (hadrons / photons)
- Hybrid approach, combining (CNNs & RNNs)
 - CNN output fed into LSTM, reflects sequential order of telescope measurements
- Network outperforms BDT



Further Developments: Deep Learning for IACT - CTlearn: https://github.com/ctlearn-project/ctlearn

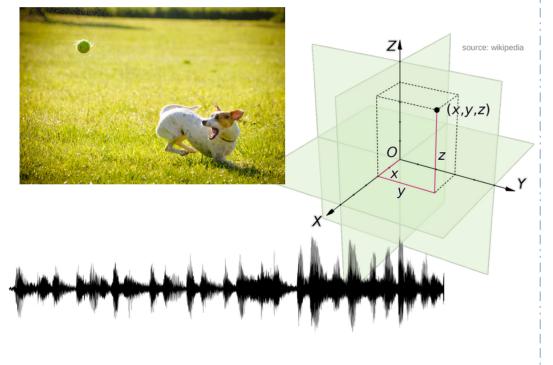
Deep learning for physics research



Shilon et al. - 10.1016/j.astropartphys.2018.10.003

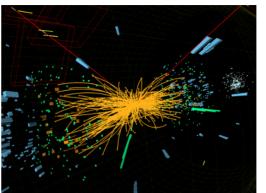
CNNs and Physics Datasets

• CNNs powerful in homogeneous and discrete (pixelized) euclidean space



10 Deep learning for physics research

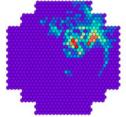
Glombitza | RWTH Aachen | 02/02/22 | Workshop Machine Learning for Cosmic-Ray Air Showers, Delaware

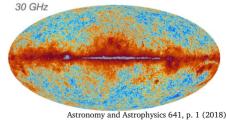


https://cds.cern.ch/record/2711418

10.1016/j.nima.2015.06.058

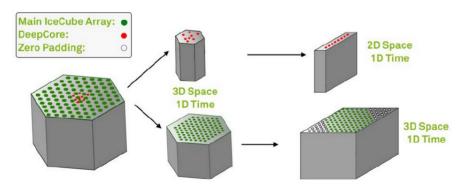
https://arxiv.org/abs/1309.7003

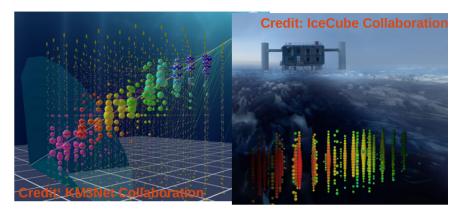




Beyond 2D Inputs

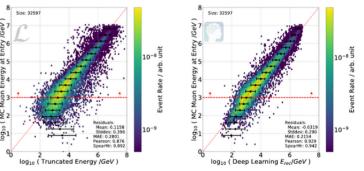
- Neutrino observatories measurements (4D)
 - position (x,y,z), time, PMTs (channels)
 - most frameworks, limited to 3D-Conv
 - projections are performed (integrating over time, or PMT)
- Reconstruction of events
 - compatible/better than comparative approaches





Standard Reconstruction

Deep Learning



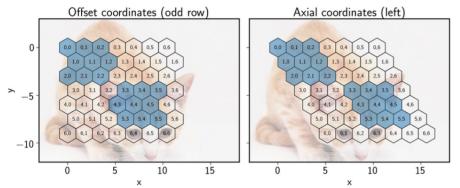
M. Hünnefeld, ICRC17 – 10.22323/1.301.1057
 A. Aiello et al., JINST 15 (2020) P10005
 R. Abbasi et al., JINST 16 (2021) P07041

Deep learning for physics research

11

Hexagonal Grids

- Most astroparticle detectors feature hexagonal grids
 - > change of coordinate system for indexing

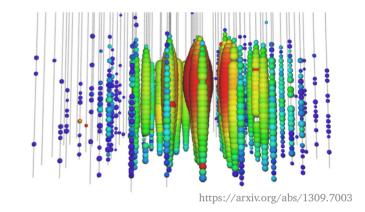


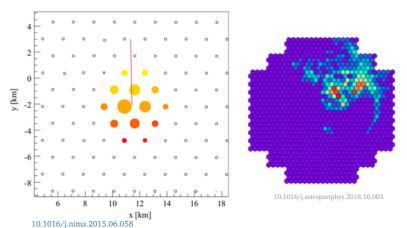
- Exploit rotational symmetry
 - extent convolution using orientation channels

E. Hoogeboom, J. Peters, T. Cohen, M. Welling: ArXiv/1803.02108

Deep learning for physics research

12





Air-Shower Reconstruction

The Pierre Auger Collaboration, JINST 16 P07019 (2021)

Pierre Auger Observatory

Fluorescence Detector (15% duty cycle)

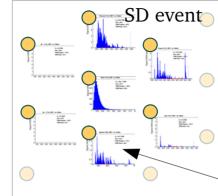
 direct and precise observation of shower maximum Xmax

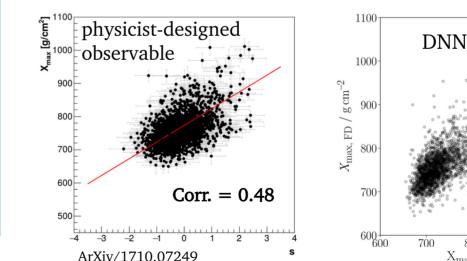
Surface Detector (~100% duty cycle)

- reconstruction of shower maximum using deep learning
- verification using hybrid measurements

13

Deep learning for physics research





Analyze footprint with

hexagonal convolution

analyze traces with RNNs

 \rightarrow translation + rotation

Corr. = 0.65

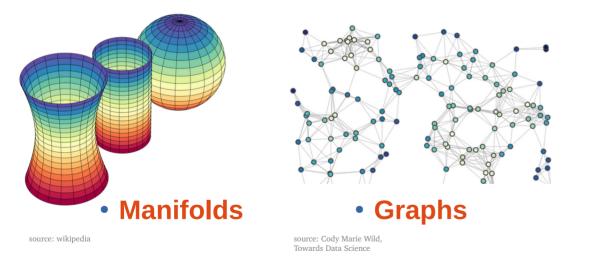
 ${
m X_{max,DNN}}^{
m 800}$ / ${
m g\,cm^{-2}}$

1000

1100

Generalization to Non-Euclidean Domains

- Defining convolutions, challenging on non-euclidean domains
 - Deformation of filters, changing neighbor relations
 - Non-isometric connections on graphs



How can we generalize convolutions?

Deep learning for physics research

Glombitza | RWTH Aachen | 02/02/22 | Workshop Machine Learning for Cosmic-Ray Air Showers, Delaware

Image-like data

- collection of pixels (vector)
- coherent (rarely sparse)
- discrete, regular (symmetric)
- feature euclidean space

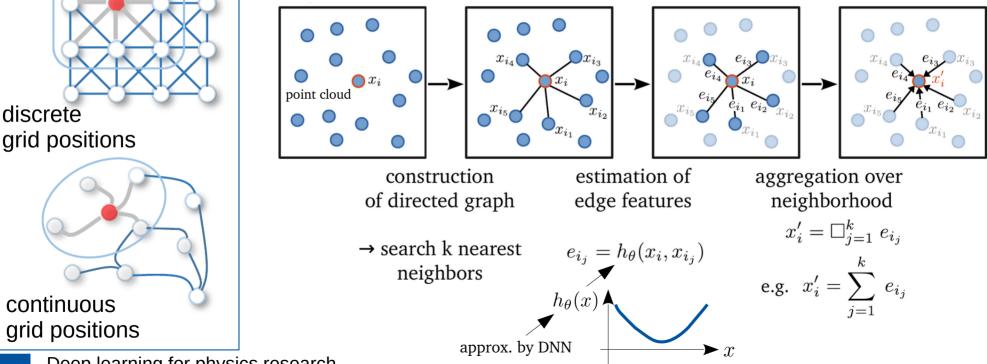
Graph Network: Dynamic Edge Convolution

Y.Wang et al. https://arxiv.org/abs/1801.07829

discrete

continuous

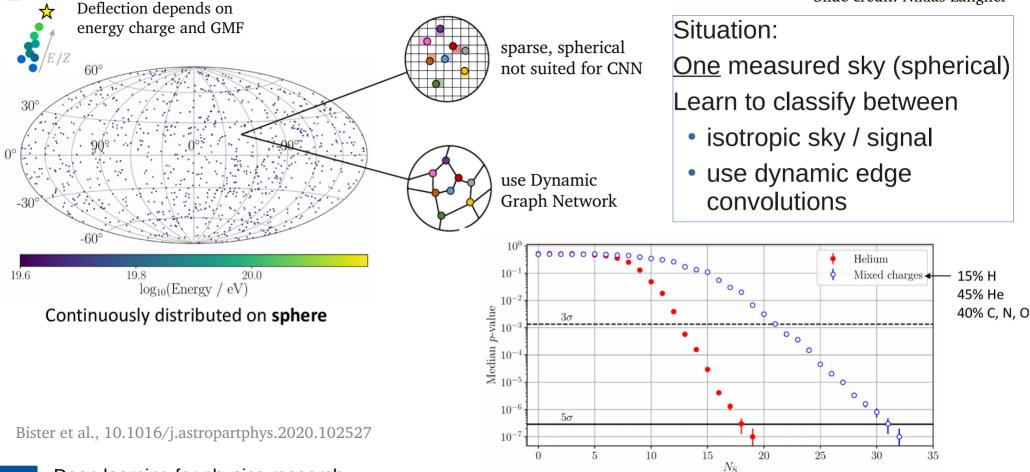
- define continuous filter (using kNN)
- flexible for many settings: irregular structures, point clouds
- dynamically 'adapt' fundamental graph structure each layer



Deep learning for physics research

Search for UHECR Origins

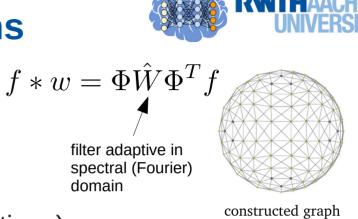
Slide credit: Niklas Langner

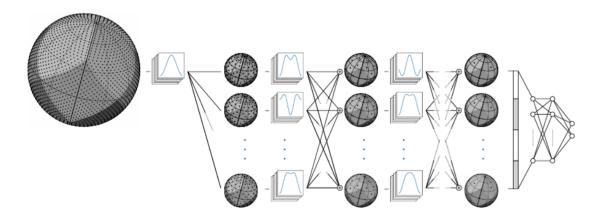


16 Deep learning for physics research

Convolutions on Spherical Domains

- (Graph) convolution in spectral domain smooth, localized filter → Chebychev expansion Example: DeepSphere, for spherical data
 - HEALPix pixelization defines graph structure
- based on fixed pixels (useful for sensor configurations)





N. Perraudin el al., 10.1016/j.ascom.2019.03.004

Deep learning for physics research

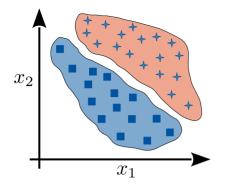
17

Glombitza | RWTH Aachen | 02/02/22 | Workshop Machine Learning for Cosmic-Ray Air Showers, Delaware

N. Krachmalnicoff et al., A&A 628, A129 (2019) Hybrid approach: 'Indexed Conv' Define 'HEALPix filters'

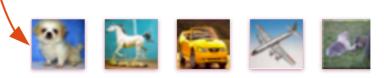
Application to search for UHECR sources: O. Kalashev et al., 10.1088/1475-7516/2020/11/005

CIFAR10



Unsupervised Learning

- Density estimation
- Anomaly detection
- Generative Models
- Simulation Refinement



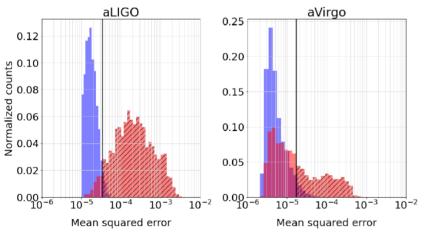
Learn to generate new samples

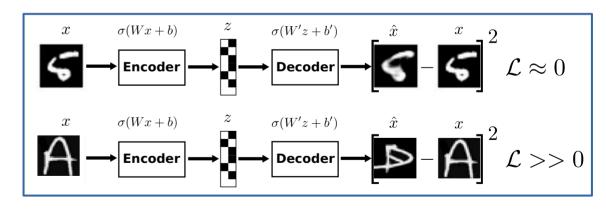
Deep learning for physics research

18

Anomaly Detection

- Search for data, different than used for training, using autoencoders
- indication for new physics, proposed for BSM searches at LHC
- training without limited data (no signal labels)
 - first approaches in astroparticle physics
 - detection of gravitational waves





F. Morawski et al., Mach. Learn.: Sci. Technol. 2 045014

Deep learning for physics research

Generative Models

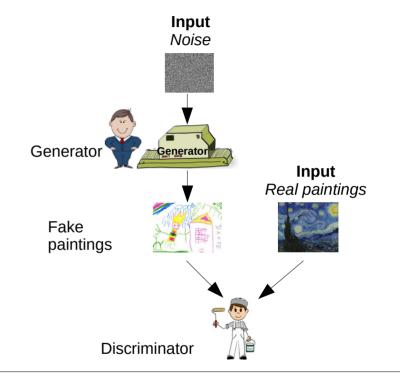
• Which picture is generated which is part of CELEB A?

T. Karras et al. - https://arxiv.org/abs/1812.04948

Play the game: https://www.whichfaceisreal.com

Deep learning for physics research

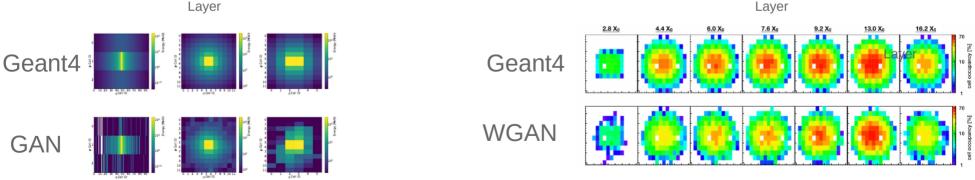
²⁰ Glombitza | RWTH Aachen | 02/02/22 | Workshop Machine Learning for Cosmic-Ray Air Showers, Delaware



Generative Adversarial Networks discriminator trained to classify fake/real generator trained to fool discriminator → learns to generate realistic fake samples

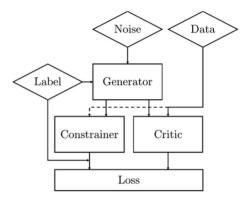
Application in Particle Physics

- Detector simulation are very time consuming
 - accelerate using GANs (speed-up of $10^3 10^5$)
- Add constraining networks to condition the generation
 - e.g., (energy, particle type, arrival direction)
- Samples must comply with physics laws
- Samples have to follow phase space density \rightarrow usually no cherry-picking



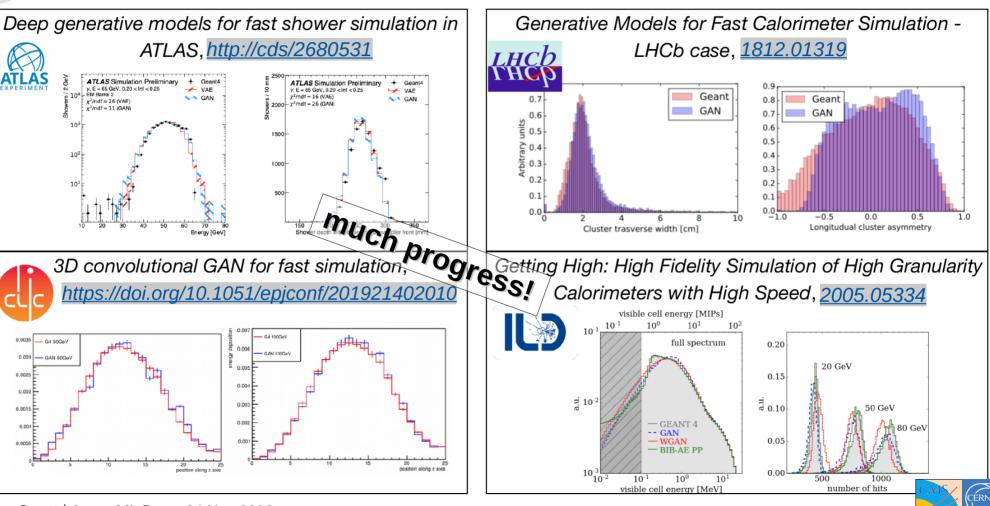
Erdmann, Glombitza, Quast - T. Comput Softw Big Sci (2019) 3: 4 Paganini, Oliviera, Nachman - Phys. Rev. D 97, 014021 (2018)

Deep learning for physics research



Laver

Application of Generative Models at LHC



Thorben Quast | Auger ML Days, 04 Nov 2020

Generalization Capacities on Data

DNNs and Domain Adaption

- models are trained using physics simulations
- trained models are applied to data
 - can lead to reconstruction biases

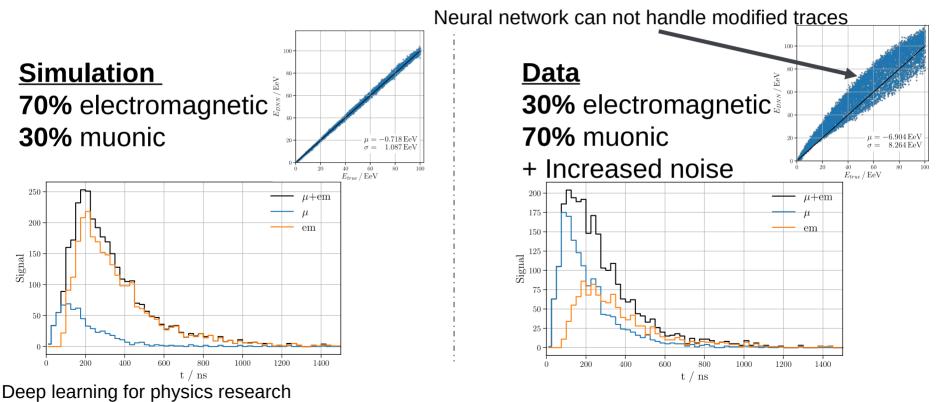
https://bair.berkeley.edu/static/blog/humans-cyclegan/

Deep learning for physics research

Simulation Refinement

Erdmann et al. Comput Softw Big Sci (2018) 2: 4

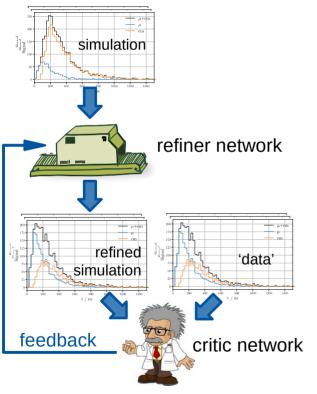
- Training on **simulations** but application on **data**
 - Model can be sensitive to artifacts / mismatches existing in simulation



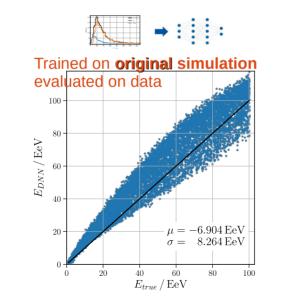
Simulation Refinement

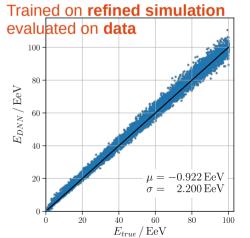
Erdmann et al. Comput Softw Big Sci (2018) 2: 4

mitigate data / simulation mismatches \rightarrow train *refiner* to refine simulated data



- feedback given by adversarial *critic* network, rating the refined simulation quality
 - refiner uses feedback to improve performance
- improved performance when training with refined simulation

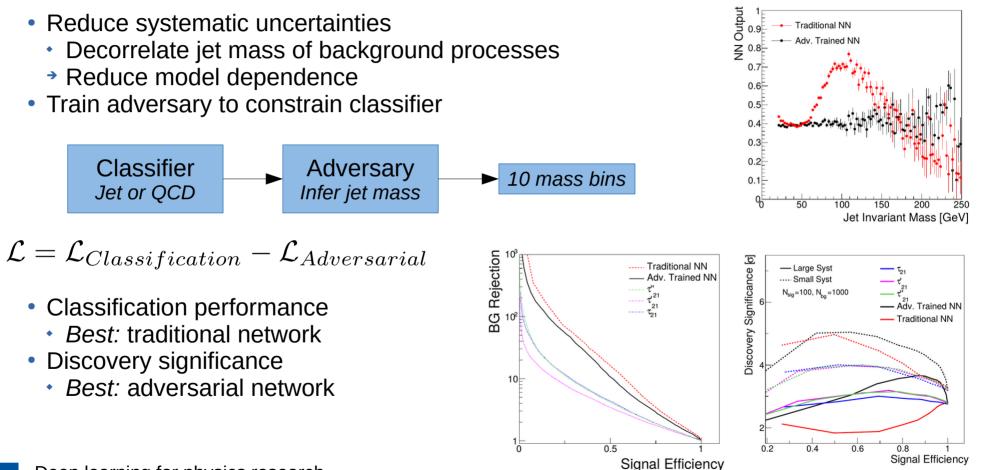




Deep learning for physics research

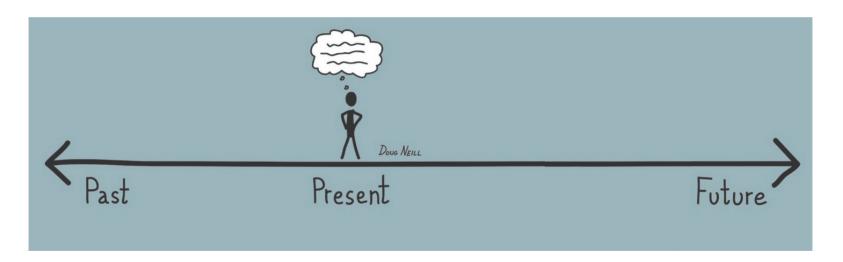
Decorrelated Jet Tagging

C. Shimmin at al., Phys. Rev. D 96, 074034 (2017)



Deep learning for physics research

(Past), State, and Future*



*Attempt of reviewing the current status and open a fruitful discussion

28 Deep learning for physics research

*Note: There is no free lunch \rightarrow "Older algorithms" are not necessarily worse

Past, Present, and Future – Deep Learning in Astroparticle Physics

III. Verified reconstruction mechanisms First publications by Collaborations, e.g., Pierre Auger, IceCube, KM3Net, ...

supervised learning

Exploiting symmetries

Incorporating symmetries into DNNs, GCNs, transformer

II. Proof of concept

- First SAL publications of applying DL at low- & high level data
- Use of standard architectures:
 FCNs, RNNs, CNNs mostly on simulations and toy simulations

I. Classic ML

Published physics analyses using high-level observables, BDTs, RFs

'Unsupervised era'

- exploiting measured data
- refinement of simulations
- domain-robust DNNs

IV. Physics analyses with DL

- Publications by Collaborations
- Application to full data sets
- Extensive study on systematic unc.

V. DL close to sensors On-site application of ML algorithms Doug Neill

Open data

Large, complete and open (MC) data

Interpretability

- DNN introspection
 & causality studies
- Distilling physics laws from DNNs

Multi-experiment DL Application of ML methods to open data

Glombitza | RWTH Aachen

unsupervised learning

self-supervised learning

Future Challenges

Causality and visualization

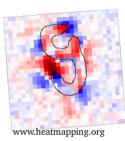
- Deep networks hold ~millions of parameters
 - Improve understanding of the emerging "tool"
- What makes a "9" a "9" for a deep neural network?
 - Find patterns important for the reconstruction
 - Explore model $\leftarrow \rightarrow$ data, what is most useful?
 - Open the black box \rightarrow find (new) physics?!

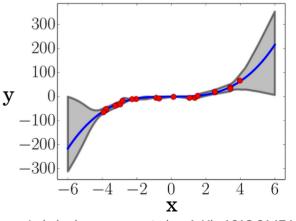
Uncertainty of predictions

- Physics analyses require careful uncertainty estimation
- De-correlation to reduce systematic biases
- > Has to be solved by physicists

Deep learning for physics research

³⁰ Glombitza | RWTH Aachen | 02/02/22 | Workshop Machine Learning for Cosmic-Ray Air Showers, Delaware





Lakshminarayanan et al. - ArXiv:1612.01474

Tryout Deep Learning Yourself!

Find many physics examples at:

http://www.deeplearningphysics.org/

For example:

31

- CNNs, RNNs, GCNs
- GANs and WGANs
- Anomaly detection, Denosing AEs
- Visualization & introspection and more

MARTIN ERDMANN | JONAS GLOMBITZA Gregor Kasieczka | uwe klemradt

References and further Readings

- [1] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, Chapter 10, MIT Press, 2016, www. deeplearningbook.org
- [2] M. Erdmann, J. Glombitza, G. Kasieczka, U. Klemradt, Deep Learning for Physics Research, World Scientific, 2021

Deep learning for physics research

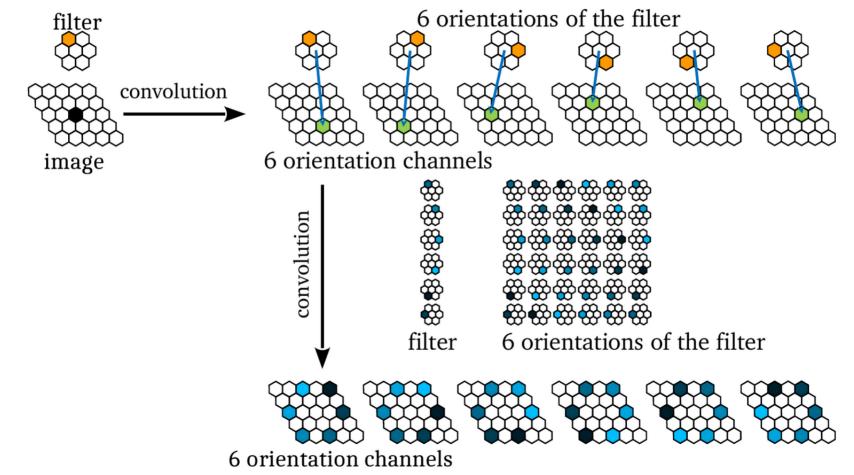
Deep learning for astroparticle physics

- BACKUP -

Jonas Glombitza, Martin Erdmann

RWTH Aachen University

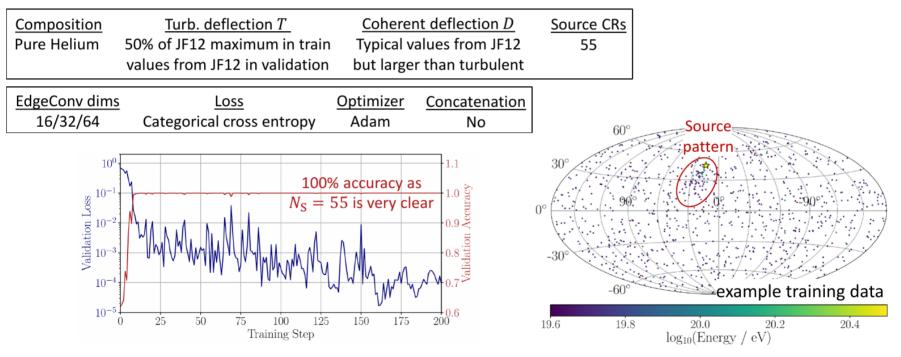
SPONSORED BY THE



Deep learning for physics research

Training

- 1000 cosmic rays with E > 40 EeV, spectrum similar to measurements of Pierre Auger Observatory
- Simulate on the fly during training → **no overfitting**
- Train on strong multiplets and let the network generalize



Deep learning for physics research

Smoothing in Spectral domain

• Approximate \hat{W}_{θ} in spectral domain $\tau(L)f = \Phi \tau(\Lambda) \Phi^T f$

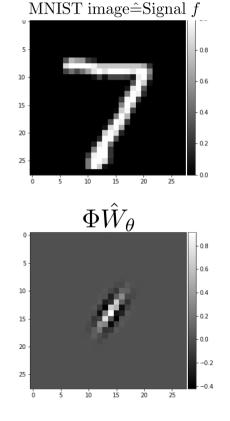
$$\Phi(\hat{W}_{\theta}\Phi^{T}f) = \Phi\begin{pmatrix} \tau_{\theta}(\lambda_{1}) & & \\ & \ddots & \\ & & \tau_{\theta}(\lambda_{n}) \end{pmatrix} \Phi^{T}f$$

•
$$\hat{W}_{\theta} \approx \tau_{\theta}(\lambda) = \sum_{k=1}^{K} \theta_k f_k(\lambda)$$
 adaptive parameters

- Learn only K parameters \rightarrow parameter reduction \mathbf{k}
- For K << N, \hat{W}_{θ} gets smooth in spectral domain
 - Spectral theory: filter become local!

proposed by Bruna et al. https://arxiv.org/abs/1312.6203

Deep learning for physics research



Boris Knyazev, Towards data science

Spectral Convolutions

RWTHAACHEN UNIVERSITY

- We can perform the convolution in the spectral domain
 - Signal $X^{(l)}$
 - Weight matrix $W^{(l)}$

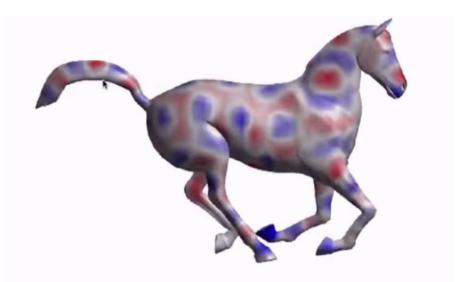
•
$$\begin{aligned} X^{(l+1)} &= \Phi(\Phi^T X^{(l)} \cdot \Phi^T W^{(l)}) \\ &= \Phi \hat{W}^{(l)}_{\theta} \Phi^T X^{(l)} \\ \bullet \hat{W}^{(l)}_{\theta} &= \text{diag}(\theta_1, ..., \theta_n) \end{aligned}$$

Adaptive parameters in Fourier domain

Problems:

- Weights scale with number of graph nodes
 - Act global! No prior on local features!
- $\hat{W}^{(l)}_{ heta}$ strongly depends on L (Λ, Φ)
 - Bad generalization performance!

Deep learning for physics research



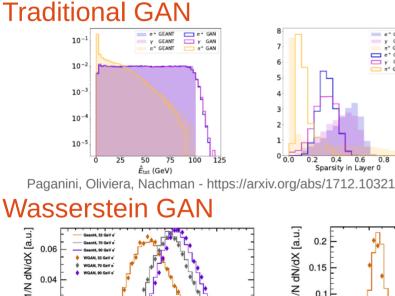
NIPS2017: M. Bronstein, J. Bruna, A. Szlam, X. Bresson, Y. LeCun

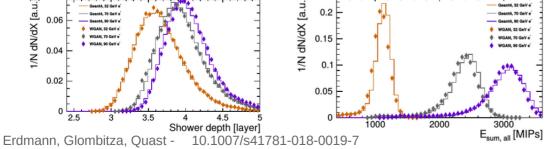
Generation of Calorimeter Images

Laver

Lavei

- Quality of images is crosschecked using physics observables
- Challenges: Sparsity, logarithmic intensity distribution





Deep learning for physics research

³⁹ Glombitza | RWTH Aachen | 02/02/22 | Workshop Machine Learning for Cosmic-Ray Air Showers, Delaware

Geant4

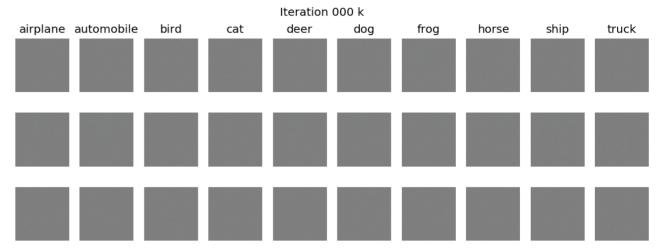
GAN

Geant4

NGAN

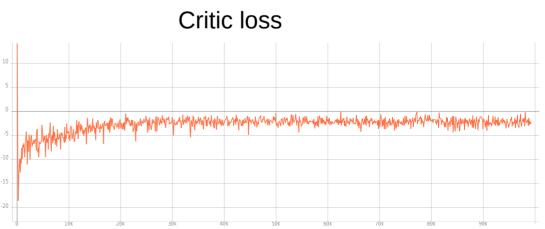
Results

- WGAN generates images with much better quality
- Critic loss converges
- Loss correlates with images quality



Wasserstein GANs

- Allow stable training of GANs
 - Train critic to convergence
 - Precise feedback for generator
- Prevent mode collapsing
- Provide meaningful loss



Deep learning for physics research

a specific feature map • Model f_{θ} pre-trained, weights θ fixed

• Find $\tilde{\mathbf{x}} = \operatorname{argmax} h(\mathbf{x}, \theta)$ \mathbf{X}

Idea:

•
$$h(\mathbf{x}, \theta) = \sum_{i,j} A_{i,j}(\mathbf{x}, \theta) + b$$

• Gradient ascent
$$\mathbf{x}' \to \mathbf{x} + \alpha \frac{dh(\mathbf{x}, \theta)}{d\mathbf{x}}$$

https://doi.org/10.1142/12294

Deep learning for physics research

42 Glombitza | RWTH Aachen | 02/02/22 | Workshop Machine Learning for Cosmic-Ray Air Showers, Delaware

Activation Maximization - CNN

