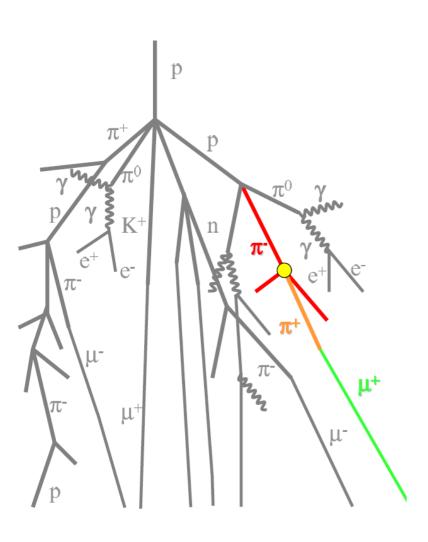
CORSIKA and CONEX for Air Shower Simulations

Tanguy Pierog

Karlsruhe Institut of Technology ,Institut für Astroteilchenphysik, Karlsruhe, Germany



Workshop on machine learning, Newark, Delaware, USA February the 2nd 2022

Outline

- Introduction
- Options and outputs
- Faster simulations
- Limitations

Extensive Air Shower

From R. Ulrich (KIT)

 $A+air
ightarrow hadrons main source of <math>p+air
ightarrow hadrons uncertainties \pi+air
ightarrow hadrons intial <math>\gamma$ from π^0 decay

$$e^{\pm} \rightarrow e^{\pm} + \gamma$$

 $\gamma \rightarrow e^{+} + e^{-}$

well known

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}/\bar{\nu_{\mu}}$$

Cascade of particle in Earth's atmosphere Number of particles at maximum

- 99,88% of electromagnetic (e/m) particles
- 0.1% of muons
- 0.02% hadrons

Energy

from 100% hadronic to 90% in e/m + 10% in muons at ground (vertical)

Origin

30+ years of development ...

- Reminder: COsmic Ray SImulations for KASCADE
- 1989 : original design optimized for vertical showers on a flat array detector using monte-carlo technique
- 1994< : extension to different type of experiments</p>
 - Cherenkov, fluorescence light, inclined showers, ...
- 2010< : extension to new type of simulations</p>
 - cascade equations, parallelization, different media ...

Technicalities

source code:

- → ~ 83 300 lines (without external programs) ~ 300 routines
- optional code : ~ 50 preprocessor options to be chosen during installation with ./coconut
- program language (portability): Fortran 77 / 90 + some few C-routines

steering input:

- free format with key words + parameters
- ~ 100 key words

documentation:

- physics: FZKA 6019 (1998)
- Webpage (documentations) : https://www.iap.kit.edu/corsika/

availability:

- download from web : <https://web.iap.kit.edu/corsika/download/>
- Access by registration to our new mailing list (by email)
- Last release: v7.7410 (30.04.2021)

Models Selection

```
Which high energy hadronic interaction model do you want to use ?
     - DPMJET-III (2017.1) with PHOJET 1.20.0
     - EPOS LHC [DEFAULT]
     - NEXUS 3.97

    QGSJET 01C (enlarged commons)

    7 - VENUS 4.12

    r - restart (reset all options to cached values)

    x - exit make
    (only one choice possible):
Use program EPOS LHC for linking
    SELECTED
                    : EPOS
    NOT COMPATIBLE TO: CHARM
 Which low energy hadronic interaction model do you want to use ?
    1 - GHEISHA 2002d (double precision)
    2 - FLUKA-CERN
    3 - FLUKA-INFN
     - URQMD 1.3cr [DEFAULT]
    r - restart (reset all options to cached values)
    x - exit make
    (only one choice possible):
Use program UrQMD 1.3c for linking
    SELECTED
 Which detector geometry do you have ?
    1 - horizontal flat detector array [DEFAULT]
   2 - non-flat (volume) detector geometry
   3 - vertical string detector geometry
    r - restart (reset all options to cached values)
   (only one choice possible):
                     : HORIZONTAL
  options: TIMEAUTO URQMD EPOS HORIZONTAL
```

First selection is the high energy hadronic interaction model :

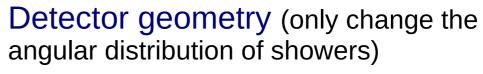
- See other talks on models to select the most suitable for your application
 - up-to-date:
 - EPOS LHC, QGSJETII-04 and SIBYLL 2.3d
 - DPMJETIII.17-1 has problem at very high energies
 - Reference:
 - EPOS LHC
 - special use:
 - others

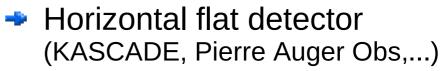
Low energy hadronic interaction model

FLUKA, Gheisha, UrQMD

```
Which high energy hadronic interaction model do you want to use ?
    1 - DPMJET-III (2017.1) with PHOJET 1.20.0
   2 - EPOS LHC [DEFAULT]
   3 - NEXUS 3.97
   4 - QGSJET 01C (enlarged commons)
   5 - QGSJETII-04
   6 - SIBYLL 2.3d
   7 - VENUS 4.12

    r - restart (reset all options to cached values)

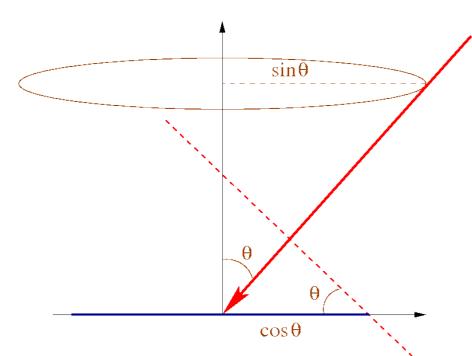

   x - exit make
   (only one choice possible):
Use program EPOS LHC for linking
   SELECTED
                    : EPOS
   NOT COMPATIBLE TO: CHARM
 Which low energy hadronic interaction model do you want to use ?
   1 - GHEISHA 2002d (double precision)
   2 - FLUKA-CERN
   3 - FLUKA-INFN
   4 - URQMD 1.3cr [DEFAULT]
   r - restart (reset all options to cached values)
   x - exit make
   (only one choice possible):
Use program UrQMD 1.3c for linking
   SELECTED
Which detector geometry do you have ?
   1 - horizontal flat detector array [DEFAULT]
   2 - non-flat (volume) detector geometry
   3 - vertical string detector geometry
   r - restart (reset all options to cached values)
   (only one choice possible):
                     : HORIZONTAL
 options: TIMEAUTO URQMD EPOS HORIZONTAL
```

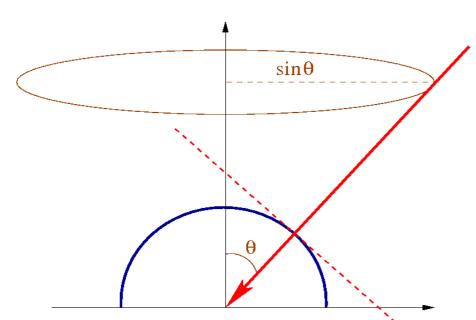

Detector geometry (only change the angular distribution of showers)

Horizontal flat detector (KASCADE, Pierre Auger Obs,...)

Non-flat (volume) detector (Magic, HESS,...)

Vertical String detector (AMANDA, IceCube, Antares, ...)

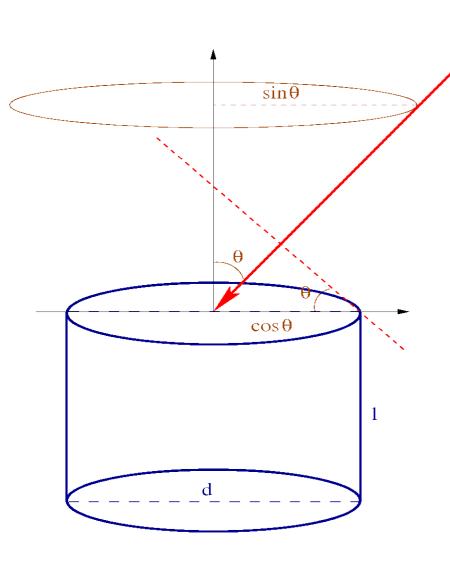




•
$$I \propto sin\theta \cdot cos\theta$$

Non-flat (volume) detector (Magic, HESS,...)

 Vertical String detector (AMANDA, IceCube, Antares, ...)



Detector geometry (only change the angular distribution of showers)

Horizontal flat detector (KASCADE, Pierre Auger Obs,...)

- Non-flat (volume) detector (Magic, HESS,...)
 - $I \propto sin\theta$
- Vertical String detector (AMANDA, IceCube, Antares, ...)

Detector geometry (only change the angular distribution of showers)

Horizontal flat detector (KASCADE, Pierre Auger Obs,...)

Non-flat (volume) detector (Magic, HESS,...)

 Vertical String detector (AMANDA, IceCube, Antares, ...)

$$I \propto (d/2)^2 \cdot \pi \cdot \sin\theta \cdot (\cos\theta + 4/\pi \cdot l/d \cdot \sin\theta)$$

Cherenkov Light

```
Which additional CORSIKA program options do you need ?
  1a - Cherenkov version
  1b - Cherenkov version using Bernlohr IACT routines (for telescopes)
  1c - apply atm. absorption, mirror reflectivity & quantum eff.
  1d - Auger Cherenkov longitudinal distribution
  1e - TRAJECTory version to follow motion of source on the sky
  2 - LPM-effect without thinning
  2a - THINning version (includes LPM)
  2b - MULTIple THINning version (includes LPM)
  3 - PRESHOWER version for EeV gammas
  4 - NEUTRINO version
  4a - NUPRIM primary neutrino version with HERWIG
  4b - ICECUBE1 FIFO version
  4c - ICECUBE2 gzip/pipe output
  5 - STACK INput of secondaries, no primary particle
  6 - CHARMed particle/tau lepton version with PYTHIA
  6a - TAU LEPton version with PYTHIA
  7 - SLANT depth instead of vertical depth for longi-distribution
  7a - CURVED atmosphere version
  7b - UPWARD particles version
  7c - VIEWCONE version
  8a - shower PLOT version (PLOTSH) (only for single events)
  8b - shower PLOT(C) version (PLOTSH2) (only for single events)
  8c - ANAlysis HISTos & THIN (instead of particle file)
  8d - Auger-histo file & THIN
  8e - MUON-histo file
  9 - external atmosphere functions (table interpolation)
       (using bernlohr C-routines)
  9a - EFIELD version for electrical field in atmosphere
  9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field
  10a - DYNamic intermediate particle STACK
  10b - Remote Control for Corsika
  a - CONEX for high energy MC and cascade equations
  b - PARALLEL treatment of subshowers (includes LPM)
  c - CoREAS Radio Simulations
  d - Use an external COAST user library (COrsika data AccesS Tool)
  d1 - Inclined observation plane
  e - interaction test version (only for 1st interaction)
  f - Auger-info file instead of dbase file
  q - COMPACT particle output file
  h - MUPROD to write decaying muons
  h2 - prEHISTORY of muons: mother and grandmother
  l - NRREXT enable run number extension
  m - hit Auger detector (steered by AUGSCT)
   - *** Reset selection ***
  z - *** Finish selection *** [DEFAULT]

    r - restart (reset all options to cached values)

  x - exit make
  (multiple selections accepted, leading '-' removes option):
Are you sure you want to continue with these current option selection:
```

- 1a Cherenkov for rectangular grid
 - cherenkov array at ground
- 1b Cherenkov for det. system (IACT)
 - HESS, Magic ...
 - with extension for more informations on particles
- 1c atmospheric corrections (CEFFIC)
 - suppression of part of the cherenkov photons (use to speed-up simulations)
 - light absorption in atmosphere
 - mirror reflectivity
 - quantum efficiency

T. Pierog, KIT - 11/37

yes or no ? (default: yes) >

```
Which additional CORSIKA program options do you need ?
  1a - Cherenkov version
  1b - Cherenkov version using Bernlohr IACT routines (for telescopes)
  1c - apply atm. absorption, mirror reflectivity & quantum eff.
  1d - Auger Cherenkov longitudinal distribution
  1e - TRAJECTory version to follow motion of source on the sky
  2 - LPM-effect without thinning
  2a - THINning version (includes LPM)
  2b - MULTIple THINning version (includes LPM)
  3 - PRESHOWER version for EeV gammas
  4 - NEUTRINO version
  4a - NUPRIM primary neutrino version with HERWIG
  4b - ICECUBE1 FIFO version
  4c - ICECUBE2 gzip/pipe output
  5 - STACK INput of secondaries, no primary particle
  6 - CHARMed particle/tau lepton version with PYTHIA
  6a - TAU LEPton version with PYTHIA
  7 - SLANT depth instead of vertical depth for longi-distribution
  7a - CURVED atmosphere version
  7b - UPWARD particles version
  7c - VIEWCONE version
  8a - shower PLOT version (PLOTSH) (only for single events)
  8b - shower PLOT(C) version (PLOTSH2) (only for single events)
  8c - ANAlysis HISTos & THIN (instead of particle file)
  8d - Auger-histo file & THIN
  8e - MUON-histo file
  9 - external atmosphere functions (table interpolation)
       (using bernlohr C-routines)
  9a - EFIELD version for electrical field in atmosphere
  9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field
  10a - DYNamic intermediate particle STACK
  10b - Remote Control for Corsika
  a - CONEX for high energy MC and cascade equations
  b - PARALLEL treatment of subshowers (includes LPM)
  c - CoREAS Radio Simulations
  d - Use an external COAST user library (COrsika data AccesS Tool)
  d1 - Inclined observation plane
  e - interaction test version (only for 1st interaction)
  f - Auger-info file instead of dbase file
  q - COMPACT particle output file
  h - MUPROD to write decaying muons
  h2 - prEHISTORY of muons: mother and grandmother
  l - NRREXT enable run number extension
  m - hit Auger detector (steered by AUGSCT)
  v - *** Reset selection ***
  z - *** Finish selection *** [DEFAULT]

    r - restart (reset all options to cached values)

  x - exit make
  (multiple selections accepted, leading '-' removes option):
Are you sure you want to continue with these current option selection:
  yes or no ? (default: yes) >
```

- 1d Auger Cherenkov long. prof.
 - not full simulation but time consuming

1e – Trajectory

follow motion of source on the sky

2 – LPM effect

only if no thinning and high energy showers (with thinning, LPM included)

2a – Thinning

Needed for high energy simulations to save time and disk space

2b – MULTIple THINning

```
Which additional CORSIKA program options do you need ?
   1a - Cherenkov version
  1b - Cherenkov version using Bernlohr IACT routines (for telescopes)
  1c - apply atm. absorption, mirror reflectivity & quantum eff.
  1d - Auger Cherenkov longitudinal distribution
  1e - TRAJECTory version to follow motion of source on the sky
  2 - LPM-effect without thinning
  2a - THINning version (includes LPM)
  2b - MULTIple THINning version (includes LPM)
  3 - PRESHOWER version for EeV gammas
  4 - NEUTRINO version
  4a - NUPRIM primary neutrino version with HERWIG
  4b - ICECUBE1 FIFO version
  4c - ICECUBE2 gzip/pipe output
  5 - STACK INput of secondaries, no primary particle
  6 - CHARMed particle/tau lepton version with PYTHIA
  6a - TAU LEPton version with PYTHIA
  7 - SLANT depth instead of vertical depth for longi-distribution
  7a - CURVED atmosphere version
  7b - UPWARD particles version
  7c - VIEWCONE version
  8a - shower PLOT version (PLOTSH) (only for single events)
  8b - shower PLOT(C) version (PLOTSH2) (only for single events)
  8c - ANAlysis HISTos & THIN (instead of particle file)
  8d - Auger-histo file & THIN
  8e - MUON-histo file
  9 - external atmosphere functions (table interpolation)
       (using bernlohr C-routines)
  9a - EFIELD version for electrical field in atmosphere
  9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field
  10a - DYNamic intermediate particle STACK
   10b - Remote Control for Corsika
  a - CONEX for high energy MC and cascade equations
  b - PARALLEL treatment of subshowers (includes LPM)
  c - CoREAS Radio Simulations
  d - Use an external COAST user library (COrsika data AccesS Tool)
  d1 - Inclined observation plane
  e - interaction test version (only for 1st interaction)
  f - Auger-info file instead of dbase file
  q - COMPACT particle output file
  h - MUPROD to write decaying muons
  h2 - prEHISTORY of muons: mother and grandmother
  l - NRREXT enable run number extension
  m - hit Auger detector (steered by AUGSCT)
   v - *** Reset selection ***
  z - *** Finish selection *** [DEFAULT]

    r - restart (reset all options to cached values)

  x - exit make
  (multiple selections accepted, leading '-' removes option):
Are you sure you want to continue with these current option selection:
  yes or no ? (default: yes) >
```

3 – PRESHOWER

preshowering of gamma primary before atmosphere

4 – Neutrino version

add neutrino into list of particle

4a – NUPRIM

- use HERWIG to have neutrino as primary particle
 - only primary neutrino will interact

4b - ICECUBE1 (fifo)

4c - ICECUBE2 (pipe output)

5 - STACKIN

start shower with a list of particle

ML - Feb 2022 T. Pierog, KIT - 13/37

Which additional CORSIKA program options do you need ? 1a - Cherenkov version 1b - Cherenkov version using Bernlohr IACT routines (for telescopes) 1c - apply atm. absorption, mirror reflectivity & quantum eff. 1d - Auger Cherenkov longitudinal distribution 1e - TRAJECTory version to follow motion of source on the sky 2 - LPM-effect without thinning 2a - THINning version (includes LPM) 2b - MULTIple THINning version (includes LPM) 3 - PRESHOWER version for EeV gammas 4 - NEUTRINO version 4a - NUPRIM primary neutrino version with HERWIG 4b - ICECUBE1 FIFO version 4c - ICECUBE2 gzip/pipe output 5 - STACK INput of secondaries, no primary particle 6 - CHARMed particle/tau lepton version with PYTHIA 6a - TAU LEPton version with PYTHIA 7 - SLANT depth instead of vertical depth for longi-distribution 7a - CURVED atmosphere version 7b - UPWARD particles version 7c - VIEWCONE version 8a - shower PLOT version (PLOTSH) (only for single events) 8b - shower PLOT(C) version (PLOTSH2) (only for single events) 8c - ANAlysis HISTos & THIN (instead of particle file) 8d - Auger-histo file & THIN 8e - MUON-histo file 9 - external atmosphere functions (table interpolation) (using bernlohr C-routines) 9a - EFIELD version for electrical field in atmosphere 9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field 10a - DYNamic intermediate particle STACK 10b - Remote Control for Corsika a - CONEX for high energy MC and cascade equations b - PARALLEL treatment of subshowers (includes LPM) c - CoREAS Radio Simulations d - Use an external COAST user library (COrsika data AccesS Tool) d1 - Inclined observation plane e - interaction test version (only for 1st interaction) f - Auger-info file instead of dbase file q - COMPACT particle output file h - MUPROD to write decaying muons h2 - prEHISTORY of muons: mother and grandmother l - NRREXT enable run number extension m - hit Auger detector (steered by AUGSCT) - *** Reset selection *** z - *** Finish selection *** [DEFAULT] r - restart (reset all options to cached values) x - exit make (multiple selections accepted, leading '-' removes option): Are you sure you want to continue with these current option selection: yes or no ? (default: yes) >

6 – CHARM

track and decay (using PYTHIA) charmed particles produced by QGSJET01 or DPMJET 2.55

6a – TAULEP

for Tau lepton propagation and decay (using PYTHIA)

7 – Slant

longitudinal profile as a function of slant depth and not vertical depth (default)

7a – Curved

- use a curved atmosphere instead of flat (default)
 - needed for large angles (>70°)

Which additional CORSIKA program options do you need ? 1a - Cherenkov version 1b - Cherenkov version using Bernlohr IACT routines (for telescopes) 1c - apply atm. absorption, mirror reflectivity & quantum eff. 1d - Auger Cherenkov longitudinal distribution 1e - TRAJECTory version to follow motion of source on the sky 2 - LPM-effect without thinning 2a - THINning version (includes LPM) 2b - MULTIple THINning version (includes LPM) 3 - PRESHOWER version for EeV gammas 4 - NEUTRINO version 4a - NUPRIM primary neutrino version with HERWIG 4b - ICECUBE1 FIFO version 4c - ICECUBE2 gzip/pipe output 5 - STACK INput of secondaries, no primary particle 6 - CHARMed particle/tau lepton version with PYTHIA 6a - TAU LEPton version with PYTHIA 7 - SLANT depth instead of vertical depth for longi-distribution 7a - CURVED atmosphere version 7b - UPWARD particles version 7c - VIEWCONE version 8a - shower PLOT version (PLOTSH) (only for single events) 8b - shower PLOT(C) version (PLOTSH2) (only for single events) 8c - ANAlysis HISTos & THIN (instead of particle file) 8d - Auger-histo file & THIN 8e - MUON-histo file 9 - external atmosphere functions (table interpolation) (using bernlohr C-routines) 9a - EFIELD version for electrical field in atmosphere 9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field 10a - DYNamic intermediate particle STACK 10b - Remote Control for Corsika a - CONEX for high energy MC and cascade equations b - PARALLEL treatment of subshowers (includes LPM) c - CoREAS Radio Simulations d - Use an external COAST user library (COrsika data AccesS Tool) d1 - Inclined observation plane e - interaction test version (only for 1st interaction) f - Auger-info file instead of dbase file q - COMPACT particle output file h - MUPROD to write decaying muons h2 - prEHISTORY of muons: mother and grandmother l - NRREXT enable run number extension m - hit Auger detector (steered by AUGSCT) - *** Reset selection *** z - *** Finish selection *** [DEFAULT] r - restart (reset all options to cached values) x - exit make (multiple selections accepted, leading '-' removes option): Are you sure you want to continue with these current option selection: yes or no ? (default: yes) >

7b – Upward

- track particle going upward
- allows upward going showers

7c – View-cone

- restrict primary angle generation to a cone around a given direction
 - to be used for atmospheric cherenkov detectors.

8a - PLOTSH

only to make a "picture" of the shower

8b - PLOTSH2

 more compact output for PLOTSH (need some special library)

Which additional CORSIKA program options do you need ? 1a - Cherenkov version 1b - Cherenkov version using Bernlohr IACT routines (for telescopes) 1c - apply atm. absorption, mirror reflectivity & quantum eff. 1d - Auger Cherenkov longitudinal distribution 1e - TRAJECTory version to follow motion of source on the sky 2 - LPM-effect without thinning 2a - THINning version (includes LPM) 2b - MULTIple THINning version (includes LPM) 3 - PRESHOWER version for EeV gammas 4 - NEUTRINO version 4a - NUPRIM primary neutrino version with HERWIG 4b - ICECUBE1 FIFO version 4c - ICECUBE2 gzip/pipe output 5 - STACK INput of secondaries, no primary particle 6 - CHARMed particle/tau lepton version with PYTHIA 6a - TAU LEPton version with PYTHIA 7 - SLANT depth instead of vertical depth for longi-distribution 7a - CURVED atmosphere version 7b - UPWARD particles version 7c - VIEWCONE version 8a - shower PLOT version (PLOTSH) (only for single events) 8b - shower PLOT(C) version (PLOTSH2) (only for single events) 8c - ANAlysis HISTos & THIN (instead of particle file) 8d - Auger-histo file & THIN 8e - MUON-histo file 9 - external atmosphere functions (table interpolation) (using bernlohr C-routines) 9a - EFIELD version for electrical field in atmosphere 9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field 10a - DYNamic intermediate particle STACK 10b - Remote Control for Corsika a - CONEX for high energy MC and cascade equations b - PARALLEL treatment of subshowers (includes LPM) c - CoREAS Radio Simulations d - Use an external COAST user library (COrsika data AccesS Tool) d1 - Inclined observation plane e - interaction test version (only for 1st interaction) f - Auger-info file instead of dbase file q - COMPACT particle output file h - MUPROD to write decaying muons h2 - prEHISTORY of muons: mother and grandmother l - NRREXT enable run number extension m - hit Auger detector (steered by AUGSCT) v - *** Reset selection *** z - *** Finish selection *** [DEFAULT] r - restart (reset all options to cached values) x - exit make (multiple selections accepted, leading '-' removes option): Are you sure you want to continue with these current option selection: yes or no ? (default: yes) >

8c – ANAHIST

- plot various particle distributions from air shower in hbook file
 - Longitudinal prof, LDF, time, weight, ...

8d – Auger-histos

hbook file but with many layers

8e – MUON-histo

hbook file for muon production depth and muon distribution study

9 – External atmosphere

Using Bernlohr C-routines.

9a - Efield

9b - RIGIDITY (Grappes)

```
Which additional CORSIKA program options do you need ?
  1a - Cherenkov version
  1b - Cherenkov version using Bernlohr IACT routines (for telescopes)
  1c - apply atm. absorption, mirror reflectivity & quantum eff.
  1d - Auger Cherenkov longitudinal distribution
  1e - TRAJECTory version to follow motion of source on the sky
  2 - LPM-effect without thinning
  2a - THINning version (includes LPM)
  2b - MULTIple THINning version (includes LPM)
  3 - PRESHOWER version for EeV gammas
  4 - NEUTRINO version
  4a - NUPRIM primary neutrino version with HERWIG
  4b - ICECUBE1 FIFO version
  4c - ICECUBE2 gzip/pipe output
  5 - STACK INput of secondaries, no primary particle
  6 - CHARMed particle/tau lepton version with PYTHIA
  6a - TAU LEPton version with PYTHIA
  7 - SLANT depth instead of vertical depth for longi-distribution
  7a - CURVED atmosphere version
  7b - UPWARD particles version
  7c - VIEWCONE version
  8a - shower PLOT version (PLOTSH) (only for single events)
  8b - shower PLOT(C) version (PLOTSH2) (only for single events)
  8c - ANAlysis HISTos & THIN (instead of particle file)
  8d - Auger-histo file & THIN
  8e - MUON-histo file
  9 - external atmosphere functions (table interpolation)
       (using bernlohr C-routines)
  9a - EFIELD version for electrical field in atmosphere
  9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field
  10a - DYNamic intermediate particle STACK
  10b - Remote Control for Corsika
  a - CONEX for high energy MC and cascade equations
  b - PARALLEL treatment of subshowers (includes LPM)
  c - CoREAS Radio Simulations
  d - Use an external COAST user library (COrsika data AccesS Tool)
  d1 - Inclined observation plane
  e - interaction test version (only for 1st interaction)
  f - Auger-info file instead of dbase file
  q - COMPACT particle output file
  h - MUPROD to write decaying muons
  h2 - prEHISTORY of muons: mother and grandmother
  l - NRREXT enable run number extension
  m - hit Auger detector (steered by AUGSCT)
  v - *** Reset selection ***
  z - *** Finish selection *** [DEFAULT]

    r - restart (reset all options to cached values)

  x - exit make
  (multiple selections accepted, leading '-' removes option):
Are you sure you want to continue with these current option selection:
  yes or no ? (default: yes) >
```

10a – DYNSTAC 10b – REMOTE control a – CONEX

- use cascade equations to reduce simulation time
 - various option for 1D or 3D

b - PARALLEL

- parallel calculation
 - shell script or MPI

c - CoREAS

- radio signal emission from air shower
 - needs more input files

Which additional CORSIKA program options do you need ?

1a - Cherenkov version

COAST Options ...

```
1b - Cherenkov version using Bernlohr IACT routines (for telescopes)
  1c - apply atm. absorption, mirror reflectivity & quantum eff.
  1d - Auger Cherenkov longitudinal distribution
  1e - TRAJECTory version to follow motion of source on the sky
  2 - LPM-effect without thinning
  2a - THINning version (includes LPM)
  2b - MULTIple THINning version (includes LPM)
  3 - PRESHOWER version for EeV gammas
     NEUTRINO version
  4a - NUPRIM primary neutrino version with HERWIG
  4b - ICECUBE1 FIFO version
    - ICECUBE2 gzip/pipe output
     STACK INput of secondaries, no primary particle
  6 - CHARMed particle/tau lepton version with PYTHIA
  6a - TAU LEPton version with PYTHIA
  7 - SLANT depth instead of vertical depth for longi-distribution
  7a - CURVED atmosphere version
  7b - UPWARD particles version
  7c - VIEWCONE version
  8a - shower PLOT version (PLOTSH) (only for single events)
  8b - shower PLOT(C) version (PLOTSH2) (only for single events)
  8c - ANAlysis HISTos & THIN (instead of particle file)
 8d - Auger-histo file & THIN
  8e - MUON-histo file
  9 - external atmosphere functions (table interpolation)
      (using bernlohr C-routines)
  9a - EFIELD version for electrical field in atmosphere
  9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field
  10a - DYNamic intermediate particle STACK
  10b - Remote Control for Corsika
  a - CONEX for high energy MC and cascade equations
 b - PARALLEL treatment of subshowers (includes LPM)
 c - CoREAS Radio Simulations
 d - Use an external COAST user library (COrsika data AccesS Tool)
 d1 - Inclined observation plane
 e - interaction test version (only for 1st interaction)
 f - Auger-info file instead of dbase file
  q - COMPACT particle output file
  h - MUPROD to write decaying muons
 h2 - prEHISTORY of muons: mother and grandmother
  l - NRREXT enable run number extension
  m - hit Auger detector (steered by AUGSCT)
   - *** Reset selection ***
  z - *** Finish selection *** [DEFAULT]

    r - restart (reset all options to cached values)

  x - exit make
 (multiple selections accepted, leading '-' removes option):
Are you sure you want to continue with these current option selection:
 yes or no ? (default: yes) >
```


d1 - Inclined

arbitrary direction for obs. level

(d2 - ROOTOUT)

produce the DAT file in ROOT

(d3 – COASTUSERLIB)

- appear only if COAST is installed
- to use COAST as external package for shower analysis

```
Which additional CORSIKA program options do you need ?
   1a - Cherenkov version
  1b - Cherenkov version using Bernlohr IACT routines (for telescopes)
  1c - apply atm. absorption, mirror reflectivity & quantum eff.
  1d - Auger Cherenkov longitudinal distribution
  1e - TRAJECTory version to follow motion of source on the sky
  2 - LPM-effect without thinning
  2a - THINning version (includes LPM)
  2b - MULTIple THINning version (includes LPM)
  3 - PRESHOWER version for EeV gammas
  4 - NEUTRINO version
  4a - NUPRIM primary neutrino version with HERWIG
  4b - ICECUBE1 FIFO version
  4c - ICECUBE2 gzip/pipe output
  5 - STACK INput of secondaries, no primary particle
  6 - CHARMed particle/tau lepton version with PYTHIA
  6a - TAU LEPton version with PYTHIA
  7 - SLANT depth instead of vertical depth for longi-distribution
  7a - CURVED atmosphere version
  7b - UPWARD particles version
  7c - VIEWCONE version
  8a - shower PLOT version (PLOTSH) (only for single events)
  8b - shower PLOT(C) version (PLOTSH2) (only for single events)
  8c - ANAlysis HISTos & THIN (instead of particle file)
  8d - Auger-histo file & THIN
  8e - MUON-histo file
  9 - external atmosphere functions (table interpolation)
       (using bernlohr C-routines)
  9a - EFIELD version for electrical field in atmosphere
  9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field
  10a - DYNamic intermediate particle STACK
   10b - Remote Control for Corsika
  a - CONEX for high energy MC and cascade equations
  b - PARALLEL treatment of subshowers (includes LPM)
  c - CoREAS Radio Simulations
  d - Use an external COAST user library (COrsika data AccesS Tool)
  d1 - Inclined observation plane
  e - interaction test version (only for 1st interaction)
  f - Auger-info file instead of dbase file
  q - COMPACT particle output file
  h - MUPROD to write decaying muons
  h2 - prEHISTORY of muons: mother and grandmother
  l - NRREXT enable run number extension
  m - hit Auger detector (steered by AUGSCT)
    - *** Reset selection ***
   z - *** Finish selection *** [DEFAULT]
  r - restart (reset all options to cached values)
  x - exit make
  (multiple selections accepted, leading '-' removes option):
Are you sure you want to continue with these current option selection:
  yes or no ? (default: yes) >
```

e – Interaction test

 only first interaction to plot particle distributions (hbook)

f – Auger info file

 special output file on generated showers (primary parameters)

g – COMPACT output

 compact output file to be used for low energy showers with few particles at ground

h – MUPROD

write in particle list produced muons which do not reach observation level

```
Which additional CORSIKA program options do you need ?
  1a - Cherenkov version
  1b - Cherenkov version using Bernlohr IACT routines (for telescopes)
  1c - apply atm. absorption, mirror reflectivity & quantum eff.
  1d - Auger Cherenkov longitudinal distribution
  1e - TRAJECTory version to follow motion of source on the sky
  2 - LPM-effect without thinning
  2a - THINning version (includes LPM)
  2b - MULTIple THINning version (includes LPM)
  3 - PRESHOWER version for EeV gammas
  4 - NEUTRINO version
  4a - NUPRIM primary neutrino version with HERWIG
  4b - ICECUBE1 FIFO version
  4c - ICECUBE2 gzip/pipe output
  5 - STACK INput of secondaries, no primary particle
  6 - CHARMed particle/tau lepton version with PYTHIA
  6a - TAU LEPton version with PYTHIA
  7 - SLANT depth instead of vertical depth for longi-distribution
  7a - CURVED atmosphere version
  7b - UPWARD particles version
  7c - VIEWCONE version
  8a - shower PLOT version (PLOTSH) (only for single events)
  8b - shower PLOT(C) version (PLOTSH2) (only for single events)
  8c - ANAlysis HISTos & THIN (instead of particle file)
  8d - Auger-histo file & THIN
  8e - MUON-histo file
  9 - external atmosphere functions (table interpolation)
       (using bernlohr C-routines)
  9a - EFIELD version for electrical field in atmosphere
  9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field
  10a - DYNamic intermediate particle STACK
  10b - Remote Control for Corsika
  a - CONEX for high energy MC and cascade equations
  b - PARALLEL treatment of subshowers (includes LPM)
  c - CoREAS Radio Simulations
  d - Use an external COAST user library (COrsika data AccesS Tool)
  d1 - Inclined observation plane
  e - interaction test version (only for 1st interaction)
  f - Auger-info file instead of dbase file
  q - COMPACT particle output file
  h - MUPROD to write decaying muons
  h2 - prEHISTORY of muons: mother and grandmother
  l - NRREXT enable run number extension
  m - hit Auger detector (steered by AUGSCT)
   - *** Reset selection ***
  z - *** Finish selection *** [DEFAULT]

    r - restart (reset all options to cached values)

  x - exit make
  (multiple selections accepted, leading '-' removes option):
Are you sure you want to continue with these current option selection:
  yes or no ? (default: yes) >
```

h2 – preHISTORY

to get information about mother and grandmother particles of particles arriving at ground

MUADDI : muons

EMADDI : electrons and photons

I – NRREXT

Extended the number of digit for the run number to 999999999

I – Auger Hit

If Cherenkov

```
Cherenkov light vertical (longitudinal) distribution option ?

1 - Photons counted only in the step where emitted [DEFAULT]

2 - Photons counted in every step down to the observation level (compatible with old versions but inefficient)

3 - No Cherenkov light distribution at all

r - restart (reset all options to cached values)

x - exit make

(only one choice possible):
SELECTED : INTCLONGSTD

Do you want Cherenkov light emission angle wavelength dependence ?

1 - Emission angle is wavelength independent [DEFAULT]

2 - Emission angle depending on wavelength

r - restart (reset all options to cached values)

x - exit make

(only one choice possible):
SELECTED : CERWLENOFF
SELECTED : CERWLENOFF
SELECTED : CERWLENOFF
SELECTED : CERENKOV
NOT COMPATIBLE TO: COMPACT VOLUMECORR INTTEST ANAHIST AUGERHIST MUONHIST AUGCERLONG ICECUE ICECUBE2
```

Che. longitudinal distribution

- differential (prod. per bin)
- integrated (sum in bin)
- none

Che. light emission

- refraction index wavelength independent
- refraction index wavelength dependent
 - emission angle change at low energy

Output Types

4 different types of output files:

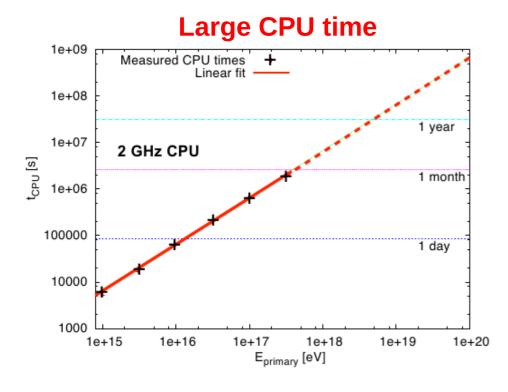
- Control output (text file)
- Particle list (binary files)
 - DAT file for secondary particles of shower
 - CER file for Cherenkov photons
- Histograms
 - LONGitudinal profile and energy deposit (ASCII)
 - ANAHIST (CERNLIB)
 - AUGERHIST (CERNLIB)
 - MUONHIST (CERNLIB)
 - First Interaction (CERNLIB)
 - COAST (with or withoutROOT)
- Infos on shower production
 - DBASE
 - INFO (Auger)

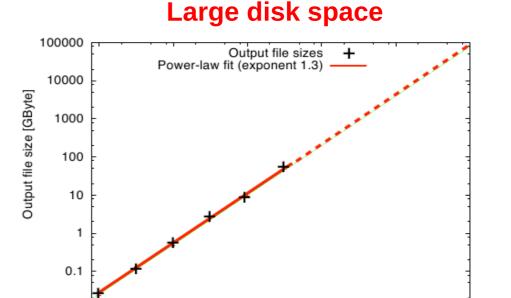
ROOT Outputs

ROOT output files:

- Using RootOut
 - not recommended because of size and structure limitations
- Using COAST
 - self defined and linked dynamically when information are extracted at running time (all tracks and hadronic interactions available)
- From DAT files (recommended)

Options and outputs


tools provided to convert the standard DAT file into ASCII or ROOT file with self defined structure


Faster

Limitations in Air Shower Simulations

Analysis based on air shower simulations affected by 2 main problems :

limited statistic due to :

1e+17

1e+18

E_{primary} [eV]

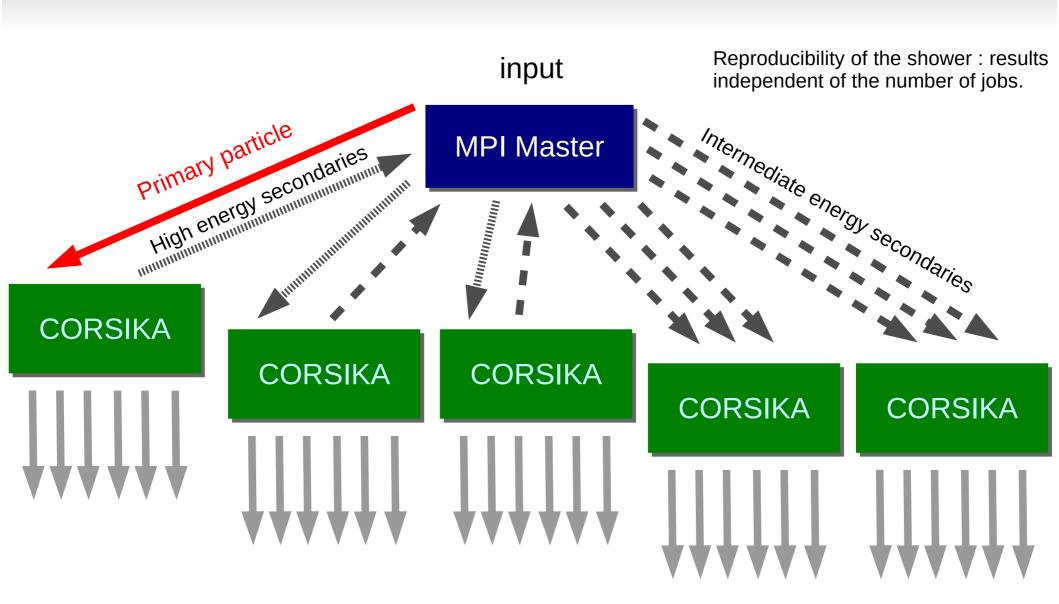
same problem for high statistic OR high energy

0.01

1e+15

1e+16

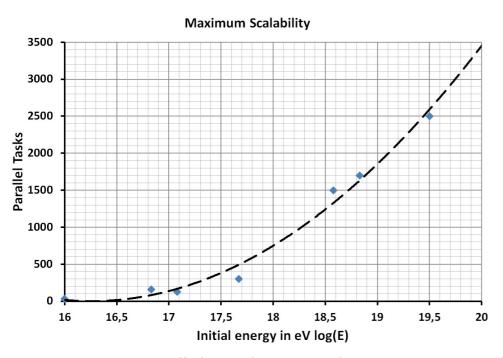
- uncertainties due to hadronic interactions
 - See later

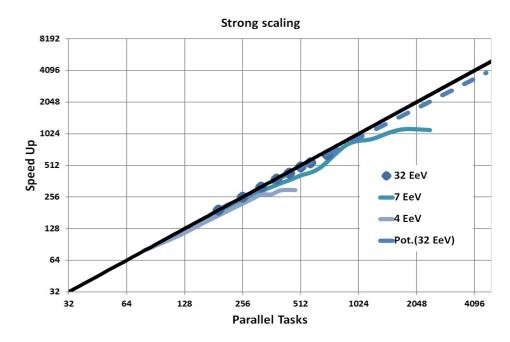

1e+19

1e+20

Current Solutions in CORSIKA

- Most commonly used: thinning
 - number of particles reduced by introducing weight
 - after each interaction only one particle kept
 - weight to conserve energy (not particle number)
 - introduce artificial fluctuations
 - particles with large weight
 - limited effect using maximum weight
- Alternative solutions for high energy showers
 - parallelization
 - use of numerical solution of cascade equations (CE)

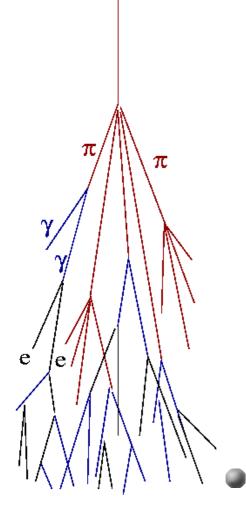

Parallelization of CORSIKA with MPI



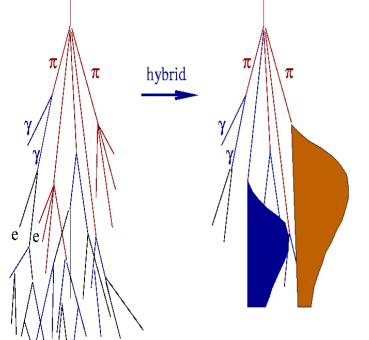
Low energy secondaries down to observation level

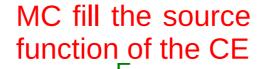
Parallelization of CORSIKA

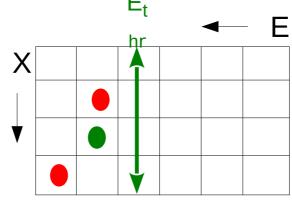
- Each shower is simulated on a large number of CPU
 - Simulation time reduction limited by the number of machines
 - Disk space problem solved by saving particles in detectors only
- solution tested for high energy showers only
 - electromagnetic shower not really parallelized ...

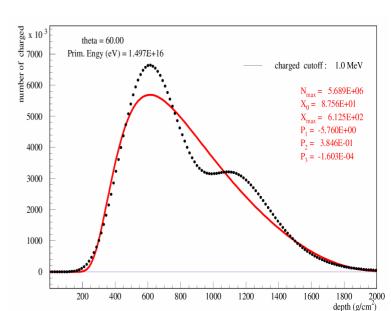

Parallel version tested on HP XC3000 (2.53 GHz CPUs, InfiniBand 4X QDR)

Air Shower Simulations

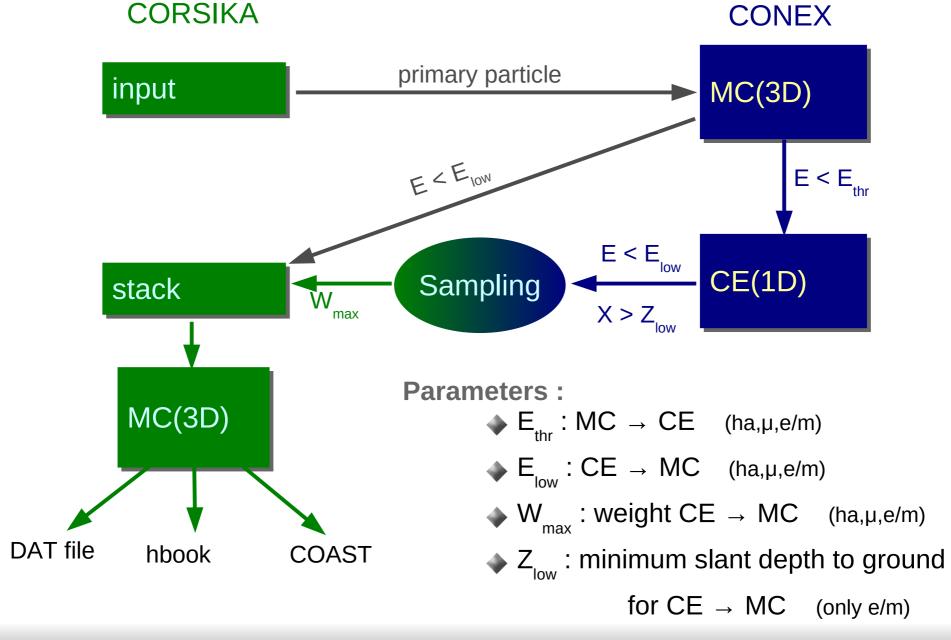


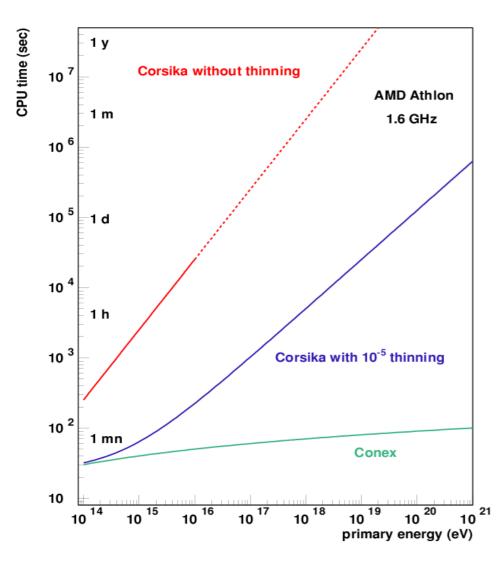

- → Full MC simulations
 - realistic
 - flexible
 - fluctuations
 - slow
- Cascade Equations (CE)
 - fast
 - mean behavior
 - no fluctuations
 - limited to analytic formula ?


Can we have the best of the 2?



- Numerical solution of cascade equations
 - same cross-section, atmosphere, models for CE and MC
 - mixing possible : hybrid simulation
 - \rightarrow CE replace MC when number of particles is large (E<E_{thr})
 - save lot of time
 - keep fluctuations
 - realistic 1D simulations (longitudinal profiles)

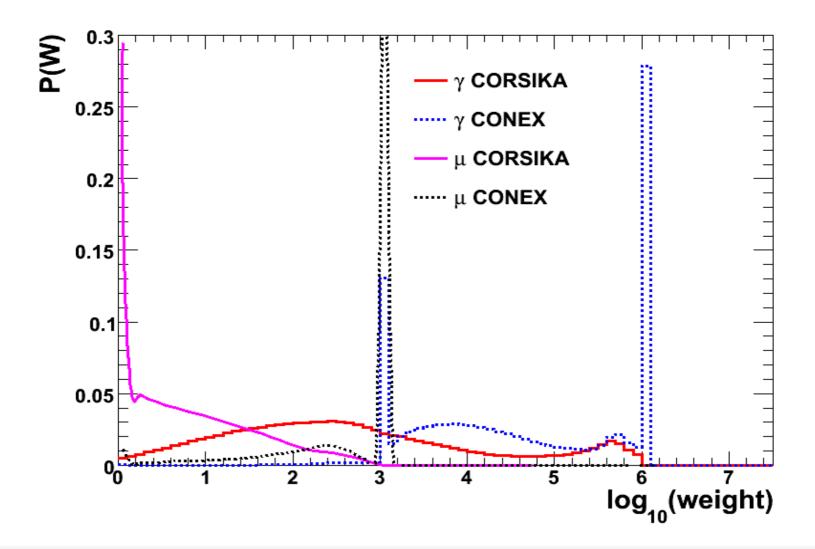



Faster

CORSIKA with CONEX

Faste

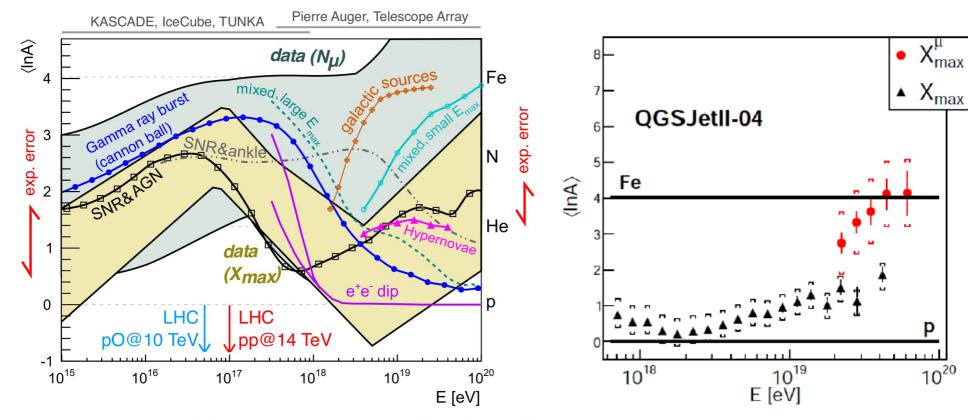
CONEX vs CORSIKA: time


- 1D
 - CORSIKA : CPU time ∝ Energy
 - ◆ CE : CPU time

 Log(Energy)
 - <1mn / shower</p>
 - and no artificial fluctuations due to thinning
- 3D
 - replace thinning
 - → 5-10 times faster than thinning for the same maximum weight
 - better weight distribution

Weight distribution R > 100 m

Very narrow weight distribution from sampling


less artificial fluctuations

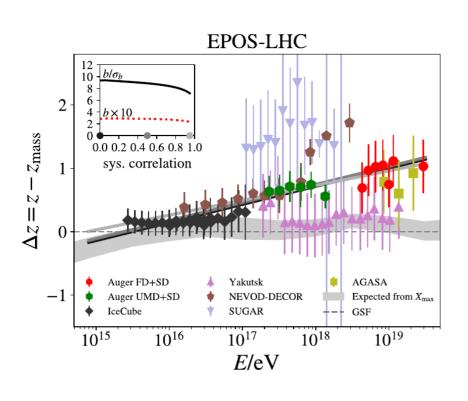
Simulation Inconsistencies

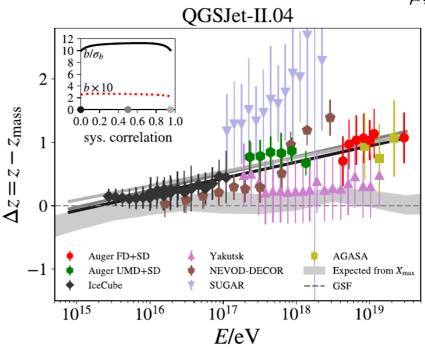
With muons, current CR data are impossible to interpret

- Very large uncertainties in model predictions
- \rightarrow Mass from muon data incompatible with mass from X_{max}

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660

Pierre Auger Collaboration

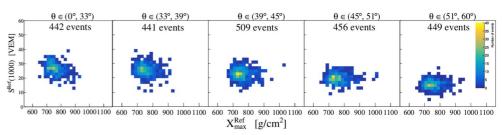

H. Dembinski UHECR 2018 (WHISP working group)

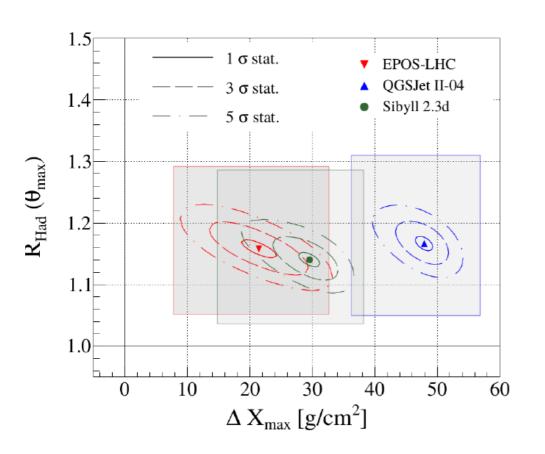

10²⁰

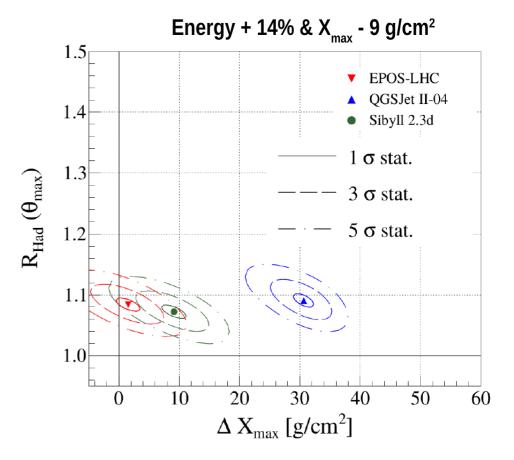
Global Picture of Muons from EAS

- Clear muon excess in data compared to simulation: WHISP 2021
 - Different energy evolution between data and simulations
 - Significant non-zero slope (>8σ)

 $z = \frac{\ln N_{\mu}^{\text{det}} - \ln N_{\mu,p}^{\text{det}}}{\ln N_{\mu,\text{Fe}}^{\text{det}} - \ln N_{\mu,p}^{\text{det}}}$




- Different global energy or mass scale cannot change the slope
 - → Different property of hadronic interactions at least above 10¹⁶ eV
- \bullet X_{max} (mass) important to get the absolute scale (+energy)!


New Analysis from PAO

Best fit of 2D (X_{max} , muon) data for different zenith angle (ICRC2021)

- Allow both X_{max} and muon rescaling
- Data best described by shifting X_{max}
- Indication but large uncertainties

Limitations

Important to keep in mind that simulations are not perfect

- CORSIKA is the best that we can get
 - Limitations mostly due to hadronic interaction models
- Clear problem with the muon production (both number and production height and then timing)
 - Physic based solution on-going ...
 - Possibility to test higher number of muons by using higher mass in CORSIKA with EPOS LHC (possibility to run very heavy mass (lnA=5 or even 6 with CONEX))
- X_{max} not necessarily perfect neither
 - \rightarrow X_{max} can be shifted artificially using FIXCHI
- Be careful with the detector simulation which might not be perfect neither ...

Conclusion

CORSIKA is a fundamental tool to get accurate simulations of air showers

- Many options
 - Important to read the user guide to select only what is useful
- Various outputs
- Possibility to optimize the running time as a function of what is needed
 - 1D (CONEX) or 3D (CORSIKA)
- Keep in mind the uncertainties due to the hadronic interactions
 - \rightarrow X_{max} could be shifted slitely (within models range)
 - Muons underestimated and produced too late (possibility to test extrapolation with higher mass)
- DNN possibly used to do fast simulations in the future
 - Replacement for cascade equations, unthinning, etc ...

T. Pierog, KIT - 37/37