

Energy Reconstructions with CNNs in IceTop

Frank McNally for the IceCube Collaboration

Machine Learning Workshop 2022

Project Overview

• Primary Objective:

 Wide-FOV reconstruction of composition and energy for use with cosmic ray anisotropy studies

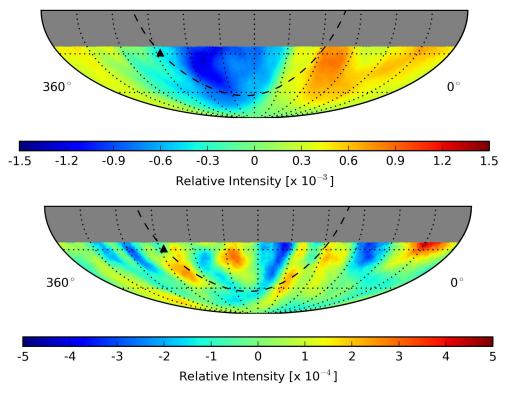
• Secondary Objectives:

- Proof-of-concept energy reconstruction
- Undergraduate education

Cosmic Ray Anisotropy

• What is it?

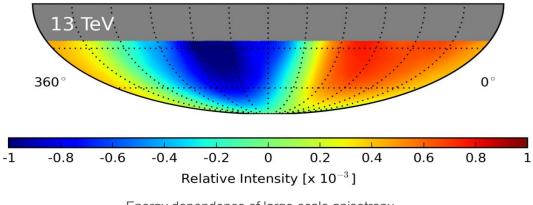
- Excesses and deficits on the order of one part-per-mille and finer
- Origins may include regular and turbulent galactic magnetic fields, or nearby sources



Aartsen et al., "Anisotropy in Cosmic-Ray Arrival Directions in the Southern Hemisphere based on Six Years of Data from the IceCube Detector", Astrophys.J. **826** (2016) no.2, 220 (<u>arXiv:1603.01227</u>)

Cosmic Ray Anisotropy

- What is it?
 - Excesses and deficits on the order of one part-per-mille and finer
 - Origins may include regular and turbulent galactic magnetic fields, or nearby sources
- Why do we need composition?
 - Need rigidity to properly understand interactions with magnetic fields

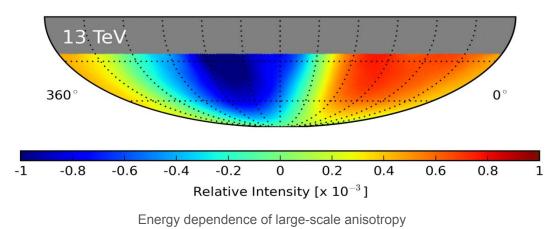


Energy dependence of large-scale anisotropy

(Created from Astrophys.J. 826 (2016) no.2, 220 (arXiv:1603.01227))

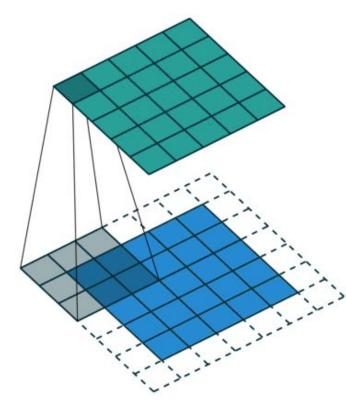
Project Requirements

- High statistics
- Detailed event information
- Wide field of view
- Composition-sensitive parameter(s)
- Undergraduate-friendly



(Created from Astrophys.J. 826 (2016) no.2, 220 (arXiv:1603.01227))

Strategy



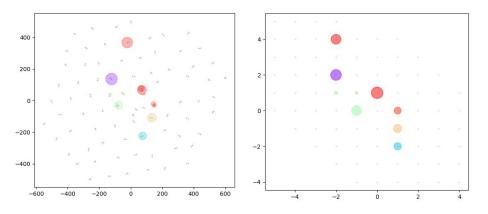
- Use as much base-level information as possible
 - Convolutional neural network (CNN)
 - Electromagnetic component of shower in IceTop
- Start with an energy reconstruction
 - Help understand the data and method
 - Compare to existing reconstructions

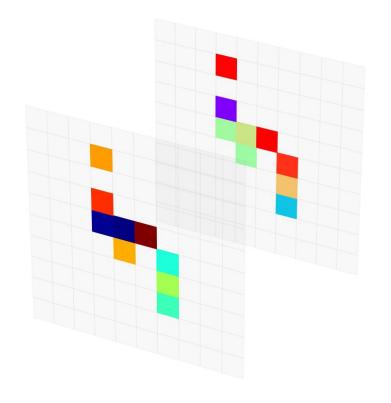
Data

7

- 81 stations
 - 2 tanks/station
 - 2 DOMs/tank (high/low gain)
- Information per tank
 - Charge
 - Arrival time*

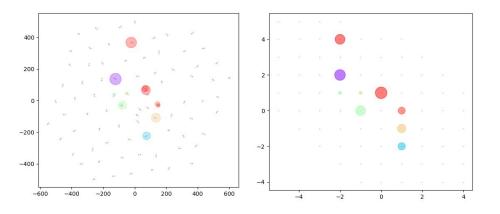
*waveform available but complicated by reflective tanks

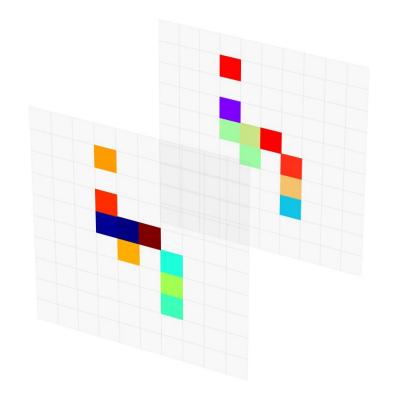




Data

- Array shape: 10 x 10 x N_{layers}
- Possible layers:
 - $\begin{array}{l} \circ & q_{1}, q_{2}, t_{1}, t_{2} \\ \circ & Q_{1+2}, T_{1+2} \end{array}$





Additional Details

- Simulation
 - Zenith range: 0-65°
 - Energy range: 5-8 in log₁₀(*E*/GeV)
 - Spectrum: E⁻¹
 - Composition: Proton and Iron
 - Interaction model: Sybill 2.1
- Pre-processing
 - Hex-to-square lattice transformation
 - Charges treated as separate layers
 - $\circ \quad \ \ \text{Time removed}$
 - Infill tanks removed

- Partition
 - 90% training
 - 85% training
 - 15% validation
 - 10% assessment

- Max charge > 6 VEM
- Max charge not on boundary
- \circ Zenith $\leq 40^{\circ}$
- Keeps ~28% of events
- Resources
 - Models trained on local supercomputer built by Dr. Anthony Choi (Mercer Engineering)

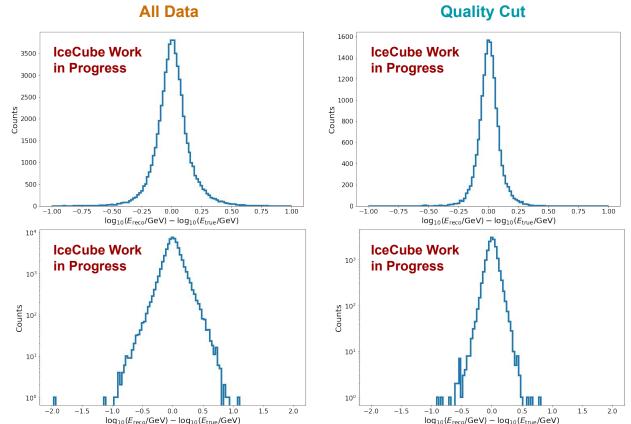
Baseline Model

- Array shape: 10 x 10 x 2
 - Time omitted
- 3 convolutional layers
 - $\circ \quad \ \ 64 \rightarrow 32 \rightarrow 16 \ filters$
- Flatten
 - Concatenate zenith
- 3 dense layers
 - o 256 units each
- Output energy

```
# Create model using functional API for multiple inputs
charge input=keras.Input(shape=(10,10,2,))
conv1 layer = layers.Conv2D(64,kernel size=3,padding='same',activation='relu')(charge input)
conv2 layer = layers.Conv2D(32,kernel size=3,padding='same',activation='relu')(conv1 layer)
conv3 layer = layers.Conv2D(16, kernel size=3, padding='same',activation="relu")(conv2 layer)
flat layer = layers.Flatten()(conv3 layer)
zenith input=keras.Input(shape=(1,))
concat layer = layers.Concatenate()([flat layer,zenith input])
dense1 layer = layers.Dense(256,activation='relu')(concat layer)
dense2 layer = layers.Dense(256,activation='relu')(dense1 layer)
dense3 layer = layers.Dense(256,activation="relu")(dense2 layer)
output = layers.Dense(1)(dense3 layer)
model = models.Model(inputs=[charge input, zenith input], outputs=output, name=name)
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae','mse'])
```

Energy Resolution

- Energy resolution Median + 34% 0
- All data: $\Delta E = 0.0 \pm 0.1$ 0
- Quality cut:
 - $\Lambda F = 0.00 + 0.07$ 0

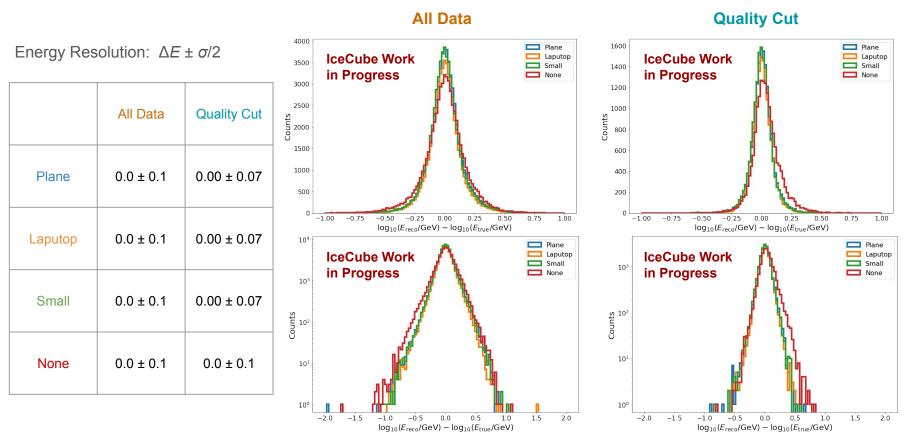


Reconstructed vs. True Energy

All Data -0.5 8.0 IceCube Work in Progress -1.07.5 -1.57.0 log₁₀(*E*_{reco}/GeV) -2.06.0 -2.5 5.5 -3.05.0 + 5.0 -3.5 5.5 6.0 6.5 7.0 7.5 8.0 $\log_{10}(E_{true}/GeV)$

-0.5 IceCube Work in Progress -1.0-1.5 $\log_{10}(E_{reco}/GeV)$ -2.0-2.5 -3.0-3.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 $\log_{10}(E_{true}/GeV)$

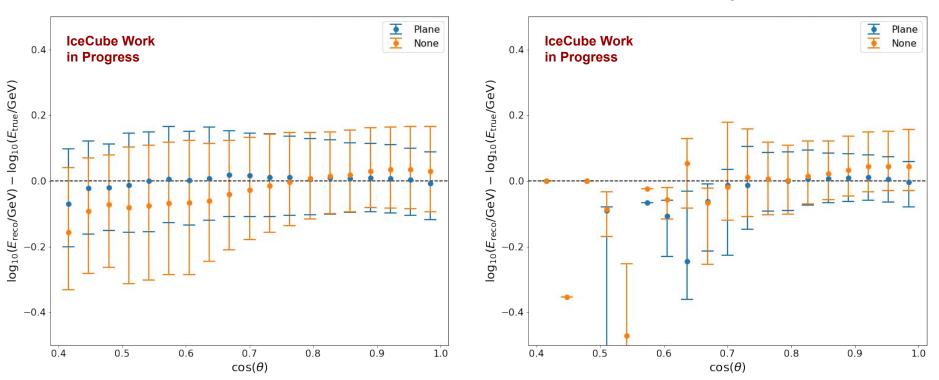
Recent Work: Testing Zenith



13

Recent Work: Testing Zenith

All Data



Results

- Early energy reconstructions performing well
 - 68% of events within ~10% of true energy with quality cuts
- Incorporating zenith improves reconstruction
 - All reconstructions comparable

Additional Tests

- Training on quality cut data
 - Worsens reconstruction
- Merging charge layers
 - All reconstructions comparable
- More complex network architecture
 - Reconstructions comparable

Suggested Tests

- Creative network architectures
- Hyperparameter optimization with Talos
- Including time
 - Time to peak, time to 50%, etc.
- Including more summary parameters

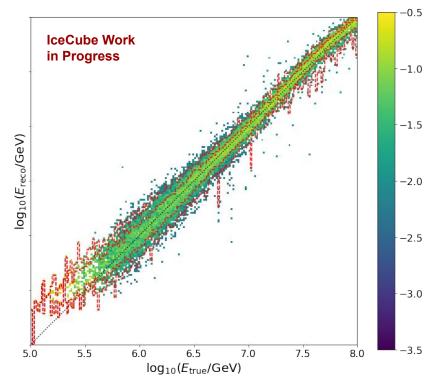
 S125, CoG, etc.
- Treat events as rotationally symmetric
- Graphical Neural Network

Backup Slides

Reconstructed vs. True Energy (Plane)

All Data -0.5 8.0 IceCube Work in Progress -1.07.5 -1.57.0 $\log_{10}(E_{reco}/GeV)$ 6.5 -2.06.0 -2.5 5.5 -3.05.0 + 5.0 -3.5 5.5 6.0 6.5 7.0 7.5 8.0 $\log_{10}(E_{true}/GeV)$

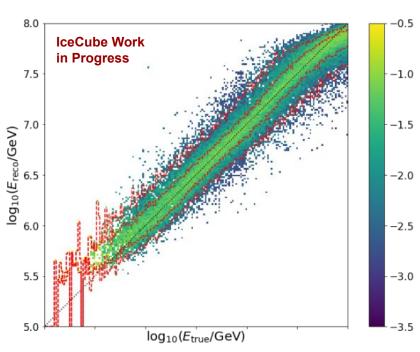
Quality Cut

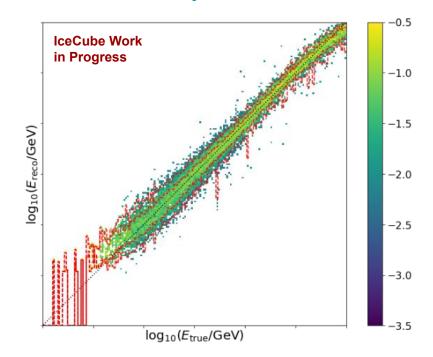


17

Reconstructed vs. True Energy (Laputop)

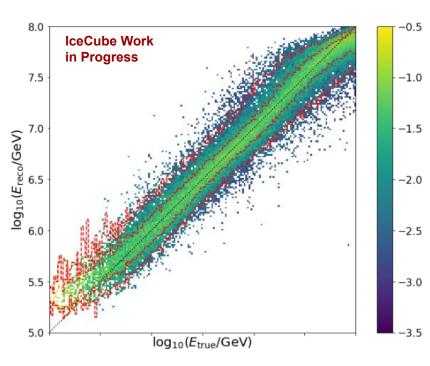
All Data

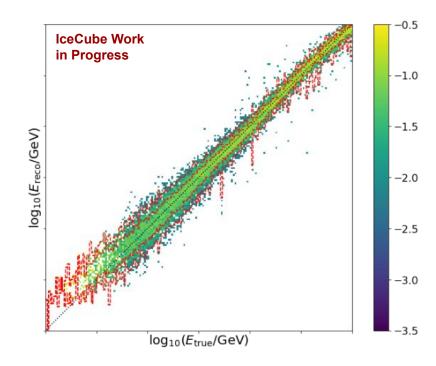




Reconstructed vs. True Energy (Small)

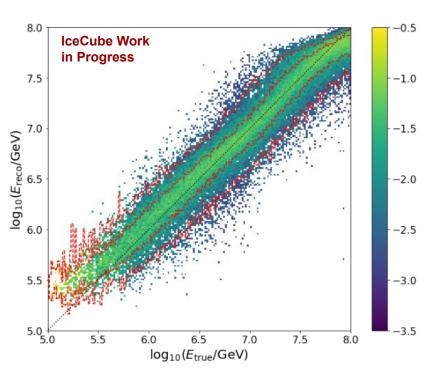
All Data

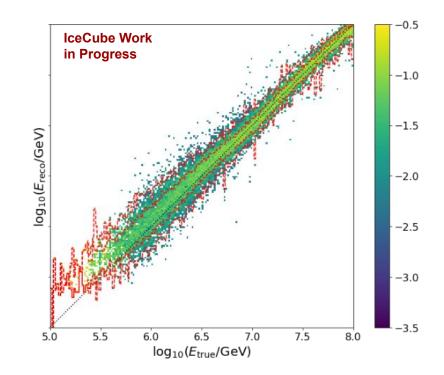




Reconstructed vs. True Energy (No Zenith)

All Data





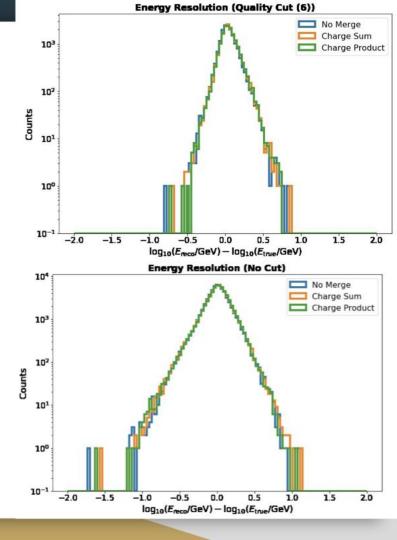
Energy Resolution of Merge Methods

These plots compare reconstructed energy and true energy. In it, there are 3 models each with different methods of merging charge layers.

- No Merging
- Sum
- Product

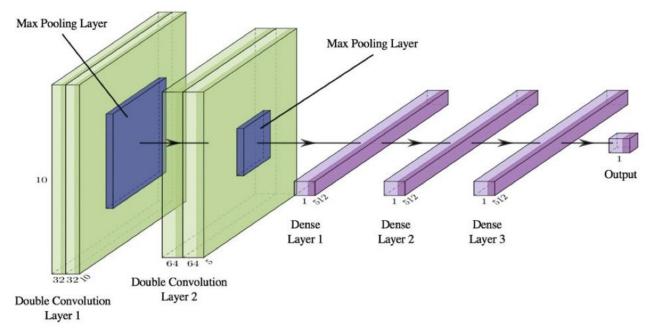
The results show that there is no perceivable advantage or disadvantage of merging.

Brandon Pascali Mercer University Slide #5



Model Architecture

Model based on the architecture used by Winter et al., 2018



Speaker: Roy Wood, Mercer University IceCube Collaboration Meeting May 2020