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 Cherenkov telescope with 61 pixel SiPM camera, small 
and robust

 2 IceAct telescopes taking data since 2019
 combine with particle footprint on ground  level and in-

ice muon reconstruction:
 cross-checks of geometry and energy reconstruction for 

the different detector components
 hybrid composition studies

The IceAct telescopes:

field telescope
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At each position 7 telescope are simulated in a station 
configuration: 1 pointing straight up, the 6 surrounding 
telescopes are tilted 13 degree. 
Standard simulation data set:
• E**-1, 3TeV-1PeV, 0-20 zenith, 
• round array with increasing radius:

● 3.5 ≤ log10(E) ≤ 4    => r = 250m; 
● log10(E) > 4 => dlog10(E)=0.25 => dr = 50m

• 110k events for proton and iron
• 100k events for photon, helium, aluminum, oxygen
• 20k events for neon
Smaller lower energy simulation data set:
• E**-1, 3-100TeV, 0-20 zenith, 
• round array increasing radius (see above)
• 50k events for proton, iron, photon, helium, aluminum, 

oxygen
=> For the further analysis both data sets have been 
merged and each telescope event is treated as single event.

MC simulation data set:

Top 
view   

    

  

IceAct Station

IceAct simulated array
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 Simulated proton event seen in multiple telescopes

 Energy : 656TeV; Zenith: 4°; Azimuth: 79°; 

 X: -181.747m; Y: -1.2746m 

Example of a simulated event:

5



 Larissa Paul 6

 GHMAX cuts events with nonphysical shower 
maximum values in the CORSIKA file

 Image cleaning keeps pulse if they are:
– Above 22mV 
– Between 14mV-22mV if they are next to 

two pixel with pulses above 22mV
 Containment keeps events if the sum of the 

inner pixels heights is 4 times larger than the 
sum of the outer pixel heights 

=> Input and Output parameters are normalized 
before they are used in the gnn

6

MC simulation data set:

Up pointing telescopes: (used in this talk) Tilted telescopes (used for the RFT talk):
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Introduction into graph neural network (gnn)

 Simple Graph Neural Network using 
Spektral package

 A Graph consists of nodes, each node has 
features and connections to other nodes

 For each event the number of nodes can 
be different

 The connection between nodes is defined 
in an adjacency matrix 

 Hidden layers are matrix convolutions of 
the graphs and the adjacency matrix 

 The normalization of the matrix differs 
depending on the chosen convolutional 
layer

https://tkipf.github.io/graph-convolutional-networks/
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Output variables: 
8 parameters

 E = energy primary
 D = distance between shower core 

and the telescope
 Sine and cosine angle on the x-y plane 

between 
x-axis and vector to shower core

 Zenith
 Sine and cosine of the azimuth angle
  shower maximum

Graphs features:
- 61 nodes = 61 pixel
- each node has 4 layers:

- pixel x position
- pixel y position
- peak height
- peak time

Adjacency matrix : 
each pixels knows itself and its 
neighbors

Edges between nodes:
same connection between all 
pixels

event reconstruction: graph neural network (gnn)

Model:
2 GatedGraphConv. Layer
1 GlobalSumPool Layer
3 Dense Layer

Shower
core position

Shower
direction

Shower
core position
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event reconstruction: graph neural network (gnn)

Loss function and validation loss of the used 
graph neural network

 Loss functions are used to evaluate the 
performance of the network 

 Used for optimizing this network is the 
mean square error (mse) function

 In addition to that the mean square 
logarithmic error (msle) is also used as 
metric to evaluate the network 

 In contrast to the loss function the metric is 
not used during the training of the loss 
function



 Larissa Paul 10

Reconstruction results:

Shower core resolution

Energy reconstruction:

 For Cherenkov telescopes there is an 
ambiguity between nearby low energetic 
air showers and more distant higher 
energetic air showers  

 Therefore this first results look very 
promising for a single telescope 
reconstruction

 Adding further information of the other 
detector components and simultaneous 
detection of several telescope should 
improve these results
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Reconstruction results: angle between true and reconstructed shower direction

Reconstruction of the shower maximum:

 For Cherenkov telescopes there is an 
ambiguity between nearby low energetic 
air showers and more distant higher 
energetic air showers  

 Therefore this first results look very 
promising for a single telescope 
reconstruction

 Adding further information of the other 
detector components and simultaneous 
detection of several telescope should 
improve these results
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 IceAct telescope measure the el.mag. air shower component 
independently

 With just a few simple cuts a gnn was successfully implemented

 Station trigger needs to be implemented to make use of the full 
station and to reconstruct events seen in more than one telescope.

 Further improvement in reconstructions anticipated by implementing:
– Test different normalizations of the input or/and output parameters 

– Simultaneous reconstruction of events seen in more than one station 

– Including additional parameter like reconstruction results from IceTop and 
IceCube 

 Increase the MC statistic and the energy range of the MC 

Summary and outlook
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