Flux calculation from PMT using Deep Learning

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Jigar, Bhanderi Dr. Dmitry Malyshev Erlangen, 03.02.2022

Motivation

Deep Neural Network

Outline

- Introduction
 - Intensity Interferometry
 - Deep Learning
- Experimental setup and data preprocessing
- Network Architectures
- Network Results

Introduction

Amplitude Interferometry

Introduction to Optical/IR Interferometry: history and basic principles

Amplitude Interferometry

Intensity Interferometry From Astronomy to Particle Physics, And Back

Introduction

Intensity Interferometry

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Intensity Interferometry

Time integrated signal of temporal correlation

Different type of Neural Networks

A Comprehensive Guide to Convolutional Neural Networks

CNNs, Part 1: An Introduction to Convolutional Neural Networks

80

?

?

?

 Convolutional Neural Network (CNN)

- Weight sharing(use same weights all over)
- Hierarchy of features(eyes+nose+ears ⊑) face)

ERLANGEN CENTRE FOR ASTROPARTICLE

PHYSICS

- Connect pixels in a neighbourhood
 spatial structure
- Maxpooling
 - Summary of region
 - Less computational cost and overfitting
- LSTM and GRU
 - $\circ \quad \ \ \text{Hidden state}$
 - information storage
 - pass information to next cell
 - GRU is simpler than LSTM

5

pointwise

multiplication

pointwise

addition

 \succ

vector

concatenation

Illustrated Guide to LSTM's and GRU's: A step by step explanation

Experimental Setup and data preprocessing

Photon rates

Source flux

Calibration of Photomultiplier Tubes for Intensity Interferometry at H.E.S.S.

Data preprocessing

- Extraction of photon shapes after preprocessing with sample size 100
- Shape set splitting for training testing and validation by 20%
- MC-data creation for selected sample size
- Input: 1D-waveform, output: number of photon peaks in sample
- Train selected neural network
- Evaluate network(test dataset)
- Testing of network
 - Lab : waveform with different transmission
 - Sirius : measurement at different instances

Charge Integration

Normalize each pulse by overlaying each at same position

Average charge = Average pulse height × Average normalized pulse sum

 $\overline{}$ Average Charge $\cdot 1.6ns$

Network Architectures

Model-1: First layer(thick)⇒second layer(thin)⇒Dense

Model-2: First layer(thin)⇒second layer(thick)⇒Dense

Model architectures

Model-3: Residual Neural Network(ResNet)

Identity branch: skip connection

Convolution branch: modified skip connection

Why ResNet?

"Visualizing Loss Landscape of Neural Nets"

Model complexity

- Weight sharing in CNN makes it less complex, even with ResNet architecture, but gated computations makes LSTMs and GRUs more complex
- More flops(Floating point operations)⇒computationally costly training

Network Results

General process

Hyper Parameters

- Number of layers
- Layer thickness
- Learning rate
- Batch size

Loss comparison

Model Evaluation

Prediction comparison (Lab)

Sample size 100

Sample size 500

Different points correspond to measurements with different grey filters, and corresponding transmittances are plotted on the x-axis

Prediction comparison(Lab)

Sample size 1000

- Learning rate : 0.0001
- Batch size : 128

All model predictions are different from each other even at smaller rate

- Learning rate : 0.0001
- Batch size : 512

At very lower rate all three models are in agreement with Charge Integration method, but they predict differently as rate increases

Prediction comparison(Lab)

Sample size 1000

Overfitting problem occurs when training duration is longer and deeper models are used

ò

Epochs

Prediction comparison(Lab)

LSTM and GRU predicting similarly from 0 to 100 MHz in agreement with Charge Integration

 \imath_3

Conclusions

- Compare to charge integration prediction
 - NN predictions have smaller uncertainties for MC test data
 - Predictions closer to ground truth
- Comparison among different models
 - CNN is better choice than other NN models since it is predicting close to MC truth
 - Deeper CNN provides more precise predictions
 - Overfitting in extended training \Rightarrow requirement of regularization
 - LSTM and GRU predicting similarly from 0 to 100 MHz in agreement with Charge Integration
- Larger sample size \Rightarrow smaller prediction uncertainties
- Predictions are slightly different from each other

Thank you for your attention

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

