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Deep Neural Network

Sample with photons and noise
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Amplitude Interferometry
Introduction

Introduction to Optical/IR Interferometry: history and basic principles
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Intensity Interferometry From Astronomy to Particle 
Physics, And Back

Amplitude Interferometry

● Fringe appearance
● Increase telescope size⇒more 

fringes
● multiple telescopes ⇒ better 

resolution

ESO Very Large Telescope Interferometer

Introduction to Optical/IR Interferometry: history 
and basic principles



Intensity Interferometry
Introduction
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[1]

● Space coherence

● time coherence

Intensity Interferometry

Coherence area Angular diameter of star

Intensity pattern in the observation plane⇒Speckle

● correlation radius 

● pattern change in each

Second order correlation function
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Intensity Interferometry

Time integrated signal of temporal correlation

Telescope 
collection 

area

Photon 
detection 

efficiency of the 
system

Source flux

Observation 
time

System 
resolution

LED as laboratory test source for astronomical intensity interferometryPhoton rates
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● Convolutional Neural Network 
(CNN)

○ Weight sharing(use same 
weights all over)

○ Hierarchy of 
features(eyes+nose+ears ➪ 
face)

○ Connect pixels in a 
neighbourhood ➪ spatial 
structure

● Maxpooling
○ Summary of region
○ Less computational cost and 

overfitting
● LSTM and GRU

○ Hidden state
■ information storage
■ pass information to next 

cell
○ GRU is simpler than LSTM

Different type of Neural Networks

A Comprehensive Guide to 
Convolutional Neural 
Networks 

CNNs, Part 1: An Introduction to 
Convolutional Neural Networks

Illustrated Guide to LSTM’s and GRU’s: 
A step by step explanation



Experimental Setup and data preprocessing

Photon rates

Telescope 
collection 

area

Photon 
detection 

efficiency of the 
system

Source flux

Optical 
bandwidth

Observation 
time

System 
resolution

Calibration of Photomultiplier Tubes for Intensity 
Interferometry at H.E.S.S.



11

● Extraction of photon shapes after preprocessing with 
sample size 100

● Shape set splitting for training testing and validation by 
20%

● MC-data creation for selected sample size
● Input: 1D-waveform, output: number of photon peaks in 

sample
● Train selected neural network
● Evaluate network(test dataset)
● Testing of network

○ Lab : waveform with different transmission
○ Sirius : measurement at different instances

Data preprocessing
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Charge Integration

Calculate average photon pulse height

Normalize each pulse by overlaying each at same position

Average charge = Average pulse height × Average 
normalized pulse sum



Network Architectures
Model-1: First layer(thick)⇒second layer(thin)⇒Dense 
layer

Model-2: First layer(thin)⇒second layer(thick)⇒Dense 
layer
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Model architectures

Identity branch: skip connection

Convolution branch: modified skip connection

Model-3: Residual Neural Network(ResNet) Why ResNet?

Deeper the network smaller the 
gradient

"Visualizing Loss Landscape of Neural Nets"

….
.

….
.

….
.

Conv
+

ReLu
Identity 

branch block Maxpooling
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● Weight sharing in CNN makes it less complex, even with ResNet architecture, but gated 
computations makes LSTMs and GRUs more complex

● More flops(Floating point operations)⇒computationally costly training

Model complexity



Network Results

Create MC dataset Train models
Lab 
measurements
with gray filters

Sirius 
measurement

Hyper Parameters

● Number of layers
● Layer thickness
● Learning rate
● Batch size

General process

Test-1 Test-2
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Loss comparison
Fully Connected Neural Network Convolutional Neural Network

Better prediction by 
factor ~5

Better prediction by factor 
~10

Very small improvement in 
predictions
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overprediction by 
~25 MHz

overprediction by 
~20 MHz

overprediction by 
~7 MHz

Model Evaluation
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Sample size 100 Sample size 500

Prediction comparison (Lab)

Different points correspond to measurements with different grey filters, and corresponding 
transmittances are plotted on the x-axis
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● Learning rate : 0.0001
● Batch size : 128

● Learning rate : 0.0001
● Batch size : 512

Sample size 1000

Prediction comparison(Lab)

At very lower rate all three models are in 
agreement with Charge Integration 
method, but they predict differently as rate 
increases

All model predictions are different from 
each other even at smaller rate
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Sample size 1000

Prediction comparison(Lab)

● Model-4: 5 times 
deeper than 
model-3

● Learning rate : 
0.001

● Batch size : 128

Overfitting problem occurs when training duration is longer and deeper 
models are used



22

Prediction comparison between two different 
configurations of LSTM and GRU With return sequence

Without return sequence

Prediction comparison(Lab)

LSTM and GRU predicting similarly from 0 to 100 
MHz in agreement with Charge Integration 
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Prediction comparison(Sirius)
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Prediction comparison(Sirius)

Sirius
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Prediction comparison(Sirius)

Sirius
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Prediction comparison(Sirius)
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Conclusions
● Compare to charge integration prediction

● NN predictions have smaller uncertainties for MC test data

● Predictions closer to ground truth 

● Comparison among different models
● CNN is better choice than other NN models since it is predicting close to 

MC truth

● Deeper CNN provides more precise predictions
● Overfitting in extended training ⇒ requirement of regularization

● LSTM and GRU predicting similarly from 0 to 100 MHz in agreement with 
Charge Integration 

● Larger sample size ⇒ smaller prediction uncertainties

● Predictions are slightly different from each other
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