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Plan of the talk

1. Baikal-GVD in general
2. ML tasks:

a. Signal-noise separation for individual events
b. Muons-neutrinos separation
c. Arrival direction reconstruction

3. Conclusion and outlook



Baikal-GVD

● Studies neutrino astrophysics

● Collaboration: 6 countries, 10 institutions

● Deep underwater detector in lake Baikal

● 8 clusters →
○ 8 strings →

■ 36 optical modules

● Working volume ~ 1 km3



Tasks for ML

Working with only one cluster (3rd).
Triggering condition: 4.5 and 1.5 p.e. signal on adjacent OMs within 100 ns window

Problem 1: Signal-noise separation for individual events
Low threshold for writing signals from OMs → 
need to suppress noise due to water luminescence 

Problem 2: Muons-neutrinos separation
Was it a muon-induced or neutrino-induced event?  

Problem 3: Arrival direction reconstruction
Where did the neutrino come from?



Data and its representation detector coordinates and readings 

3D convolutions

Geometrical

MC simulations for μ (from cosmic 
rays) and 𝜈μ

Waveforms → discrete impulses

Data includes:
1. Registered charge
2. Time of activation
3. Detectors coordinates
4. Hit labels 

(cascade/track/noise)
Time ordering

112 “OM modules”

Temporal

1D convolutions and RNNs



Signal-noise separation for individual events

Temporal NN is better (and faster)

U-net-like architecture

Optical modules data :: (112,6)

Unet encoder block: f=80, k=12 :: (56,80)

Unet encoder block: f=96, k=10 :: (28,96)

Unet encoder block: f=48, k=8 :: (14,48)

Unet decoder block: f=96, k=8 :: (28,96)

Unet decoder block: f=112, k=10 :: (56,112)

Unet decoder block: f=96, k=12 :: (112,96)

+

+

Bidirectional LSTM: u=64 :: (112,64)

Conv1D: f=2, k=4 :: (112,2)

Bidirectional LSTM: u=64 :: (112,64)

Conv1D: fiters, kernel_size

PReLU & BatchNormalization

Conv1D/Conv1DTranspose: 
fiters, kernel_size, strides=2

PReLU & BatchNormalization

Unet encoder/decoder block: 
fiters, kernel_size

Input data:
   1-3) coordinates: x, y, z
   4) integral signal
   5) time of the activation
   6) mask (auxiliary/true hit)

Output:
   For each hit, the probability that it is
   due to signal or noise.



Results
precision = t_s/(t_s+f_s), recall =  t_s/(t_s+f_n)

(t_s - true signal,f_s - false signal, f_n - false noise)



Muons-neutrinos separation: NN architecture

Temporal NN is better (and faster)

U-net architecture

Input data:
   Purified (only signal hits)
   1-3) coordinates: x, y, z
   4) integral signal
   5) time of the activation

Output:
   For each event, the probability that
   it is neutrino- or muon-induced.

Optimization in progress



Muons-neutrinos separation: loss function

Signal to noise ratio: 10-6-10-5 , expected 𝜈μ events ~ 5*103 year-1

● Introduce weights (~10) for muon-induced events;
● Use focal loss (arXiv:1708.02002):  Loss = (1-pcorrect)

2*bce.    

focal loss



Muons-neutrinos separation: optimal threshold

P(μ | det-𝜈) ~ Nfalse_𝜈(cut) / Ntrue_𝜈(cut) → minimize by optimising threshold

Best values: P=0, cut=0.9875, exposure=82%
    ( P(cut=0.98) = 2.1*10-6 )

Important:

● Use ensemble of NNs to suppress fluctuations
● Independent sets for EarlyStopping and cut optimization



Arrival direction reconstruction

Neutrino events: arrive from under 
the earth

Work at early stages…

Geometrical NN is better

Problems:

● Clear peaks in azimuth angle 
reconstruction

● Low angle resolution



Conclusions

1. Temporal NNs are great, except for geometrical questions
2. For extreme purity, employ focal loss

Outlook

● Try graph neural networks
● Go to multicluster regime
● Optimize NNs further


