Machine learning in Baikal-GVD

Workshop on ML for cosmic-ray air showers, 03.02.22

Plan of the talk

- 1. Baikal-GVD in general
- 2. ML tasks:
 - a. Signal-noise separation for individual events
 - b. Muons-neutrinos separation
 - c. Arrival direction reconstruction
- 3. Conclusion and outlook

Baikal-GVD

- Studies neutrino astrophysics
- Collaboration: 6 countries, 10 institutions
- Deep underwater detector in lake Baikal
- 8 clusters \rightarrow
 - $\circ \quad \text{8 strings} \rightarrow$
 - 36 optical modules
- Working volume ~ 1 km³

Tasks for ML

Working with only one cluster (3rd).

Triggering condition: 4.5 and 1.5 p.e. signal on adjacent OMs within 100 ns window

Problem 1: Signal-noise separation for individual events Low threshold for writing signals from OMs \rightarrow need to suppress noise due to water luminescence

Problem 2: Muons-neutrinos separation Was it a muon-induced or neutrino-induced event?

Problem 3: Arrival direction reconstruction Where did the neutrino come from?

Geometrical

detector coordinates and readings

Data and its representation

MC simulations for μ (from cosmic rays) and ν_{μ}

Waveforms \rightarrow discrete impulses

Data includes:

- 1. Registered charge
- 2. Time of activation
- 3. Detectors coordinates
- 4. Hit labels (cascade/track/noise)

Results

precision = $t_s/(t_s+f_s)$, recall = $t_s/(t_s+f_n)$ (t_s - true signal, f_s - false signal, f_n - false noise)

Muons-neutrinos separation: NN architecture

Temporal NN is better (and faster)

U-net architecture

Input data:

Purified (only signal hits)

1-3) coordinates: x, y, z4) integral signal5) time of the activation

Output:

For each event, the probability that it is neutrino- or muon-induced.

Optimization in progress

Muons-neutrinos separation: loss function

Signal to noise ratio: 10^{-6} - 10^{-5} , expected v_{μ} events ~ $5*10^3$ year⁻¹

- Introduce weights (~10) for muon-induced events;
- Use focal loss (arXiv:1708.02002): Loss = $(1-p_{correct})^{2*}$ bce.

Muons-neutrinos separation: optimal threshold

 $P(\mu \mid det-\nu) \sim N_{false_{-\nu}}(cut) / N_{true_{-\nu}}(cut) \rightarrow minimize by optimising threshold$

Best values: P=0, cut=0.9875, exposure=82% (P(cut=0.98) = 2.1*10⁻⁶)

Important:

- Use ensemble of NNs to suppress fluctuations
- Independent sets for EarlyStopping and cut optimization

Arrival direction reconstruction

Neutrino events: arrive from under the earth

Work at early stages...

Geometrical NN is better

Problems:

- Clear peaks in azimuth angle reconstruction
- Low angle resolution

Conclusions

- 1. Temporal NNs are great, except for geometrical questions
- 2. For extreme purity, employ focal loss

Outlook

- Try graph neural networks
- Go to multicluster regime
- Optimize NNs further