Deep Learning for Classification and Denoising
of Cosmic-Ray Radio Signals

Abdul Rehman, Dana Kullgren, Alan Coleman, Frank Schroeder

Workshop on Machine Learning for Cosmic-Ray Air Showers, Delaware USA.

UNIVERSITY OF DELAWARE

BARTOL RESEARCH
INSTITUTE

lceCube
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Q  Introduction:
Q CRAir showers.
a Radio emission from air showers.
Q  Use of Deep Learning for Classification and Denoising.
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CNN Network architecture
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Other network that we have tried.
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[ Cosmic-Ray Air Showers ]

EAS of cosmic rays in atmosphere

e
e Primary CRs produce Air Showers when they enter the atmosphere. jnteraction e

Secondary
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e Number of secondary particles first grows, then reach a maximum at
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[ Radio Emission from Air Showers ]
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[ Introduction ]

O  Radio detection, like other techniques, has to deal with the continuous background.
@  Because of the noise contaminating the radio signals, radio detection threshold is very high.
@  Weare using ML (Convolutional Neural Networks) to try to mitigate the effects of background.
@  To train networks we used simulated radio signals and background.
Q  Example Traces are shown in the bottom plots.
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[ Classifier and Denoiser ]

e Using Keras/Tensorflow to construct 1D Convolutional Neural Networks.
e Classifier: Identify radio signals and backgrounds.

e Denoiser: Recover the underlying signals from the Noisy traces.
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[ Data Preparation ]

> Dataset:
o CORSIKA -~ Simulation of air-showers.
( IceTop atmosphere )
o CoREAS - Radio emission from air-showers.
( Sibyll 2.3d as a high-energy hadronic interaction model. )
o Zenith angles - [0, 65]deg in steps of 5 deg, random azimuth angles.
o For background: Modeled (Cane) Noise > Average Galactic + Thermal background
( Dana kullgren will show results using measured background from prototype station at the South Pole)
o After adding antenna and electronic responses the signal and background are combined to produces
Noisy traces.
o Filtered band [50-350] MHz.

o Traces are also normalized before inputting them to the network.
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[ Training and Testing Sets ]

o Signal to Noise ratio (SNR) is used to quantify the signal strength.

o Signals are scaled before adding noise.
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[ Network Architecture ]

. — > [ Input Layer ]
e Networks are based on Autoencoder technique. , .
[ Convolution Layer ]:l £
e 1D convolutional layers are used with Max-pooling [ Max-pooling Layer J-1s
and Up-sampling layers to create encoding and 3 -
decoding layers respectively. g
g lay p y . g ( Convolution Layer ]:| E,
S E
e C(lassifier also includes Flattening and Dense = [ Up-Sampling Layer )12
wn
layers. g ( Convolution Layer ]
- |
e ReLu activation function is used in all except the ,
last layer which uses Sigmoid. Flattening
— Dense Layer

Model Architecture
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[ Learning Curve ]

Mean squared error (MSE) is used as a loss function.

3x1073 ——
Early stopping is used: Test Loss
o  Stop training If test loss is not decreasing 2x10
after 20 epochs.
Not much difference in the training and testing loss, 2
. . ey = 1073+
which means that the network is not overfitting.
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[ Classifier Results }

> Validation set: 11k signal + 15K background traces. Similar SNR distribution as training and testing set.
> Threshold for signal trace: output value = 0.6 .
> TP and FP rates (in percent), shown in the right plot.
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|

Denoiser Results ]

>

> Two examples shown in bottom left.

> 1st row - best case scenario.

> 2nd row - worse case.
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Classified Signal traces are passed to the Denoiser for cleaning.
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[ Accuracy Metrics }
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Other Networks tried

input_4: InputLayer

1 T
LA~ A |—>| —{ A

Istm_9: LSTM
Istm_10: LSTM
e RNNSs process inputs in a sequential manner, where the

information from the previous input is considered when
computing the output of the current step.

dense_3: Dense

e We have used the type of RNN called LSTM.

dropout_1: Dropout

e LSTM’s have the ability to preserve the long-term memory.
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dense_4: Dense
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CNN + LSTM

e We have also tried combining the two networks.

input_1: InputLayer

convld: ConvlD
’ max_pooling1d: MaxPooling1D | | cu_dnnlstm: CuDNNLSTM |

: . £ 60

convld_1: ConvlD cu_dnnlstm_1: CatDNNLSTM C

()

| } 5

-

O]
’ max_pooling1ld_1: MaxPooling1D l flatten_1: Flatten a8 40
convld_2: ConvlD 2 0
0

concatenate: Concatenate
dropout: Dropout

®

UNIVERSITY OF DELAWARE

BARTOL RESEARCH
INSTITUTE

oo

True Positive (LSTM)

True Positive (CNN)
| o-o—6—& True Positive (CNN + LSTM) ]
10! 102 103 104 10°

l0g10(SNR)

15

Abdul Rehman, Workshop on ML for Air Showers, Delaware USA. arehman@udel.edu




Using the Frequency spectrum

FFT of time series gives us complex frequency spectrum.
We can either use the Real and Imaginary part of the spectrum.
Or we can use Frequency Amplitude and Phases.

0 Ooodo

So far this does not improve the results.
Question: How to deal with the Phases?
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Summary and Outlook

We are using Convolution networks to study radio signal from cosmic-ray air showers.
CoREAS simulations are used to produce radio signals.

For background we used modeled noise.

Other networks like LSTM are also tried but they did not perform better than the CNNs.
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We have used time series information for networks training, Currently working on

using the frequency spectrum as well.
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