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Telescope Array Surface 
Detector
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• recover UHE primary energy and direction 
• study mass composition 
• search for UHE photons

Outline
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With ML-based reconstruction we will

O. Kalashev et al, PoS ICRC2019 (2020) 304 
TA Collaboration,, J.Phys.Conf.Ser. 1525 (2020) 1, 012001 
D. Ivanov et al, Mach.Learn.Sci.Tech. 2 (2021) 1, 015006 

TA Collaboration, PoS ICRC2021 (2021) 384 
TA Collaboration, PoS ICRC2021 (2021) 864 
O. Kalashev et al, arXiv:2112.02072
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Event sample by SD array
Jan. 22, 2009, 22:54:22 UTC 
zenith ~38o

upper layer 
lower layer

Central EM components 
~ 50 MIPs

muon components 
~ 1 MIPs

delayed neutrons 
~ 5 MIPs 
no signals on lower

relative arrival time [μs]  12

Sample event

Time step 20 ns
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Event reconstruction
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• LDF
f (r) =

✓
r

Rm

◆�1.2 ✓
1 +

r

Rm

◆�(⌘�1.2) ✓
1 +

r2

R2
1

◆�0.6

Rm = 90.0 m, R1 = 1000 m, RL = 30 m, ⌘ = 3.97� 1.79 (sec (✓)� 1) ,

r =
q

(xcore � x)2 + (ycore � y)2,

• Timing

LDF (r) = f (r) /f (800 m) S (r) = S800 ⇥ LDF (r)

Free parameters:

tr = to + tplane + a⇥ (1 + r/RL)
1.5 LDF (r)�0.5

Observables:
tr
Sr

- detector time
 - detector integral signal

xcore, ycore, ✓, �, S800, t0, a

standard parametric approach
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Primary energy determination
First estimation of SD energy

2013/4/25 H. Sagawa 12

sec(T)

lo
g 10

(S
80

0)

Monte Carlo Æ Energy table
E’SD = E’SD(S800, T) 

Energy Scale Check and resolution
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FD energy EFD

SD energy ESD
(scaled to FD energy)

ܦܵܧ = 1.27/ܦᇱܵܧ

Hybrid events E > 1019 eV
Angular resolution = 1.4o

E > 1019 eV
Energy resolution < 20%

ESD = E’SD / 1.27

E’SD = E’SD(S800, θ) 

Scale to FD energy

r = 800m

S800

 14

Energy estimate

- table function

Event reconstruction
standard parametric approach
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Purpose (ideally): recover primary particle properties (arrival 
direction, energy, mass, …) as function of observables.

Direct observables in SD:
•  Time series of the SD signals

Instruments:
• SD Monte-Carlo (EAS development and detector response) 
• Artificial neural network (NN) 
• Can describe any continuous function of input data 
• Can be tuned using examples generated using Monte-Carlo

Event reconstruction

7

Machine learning approach
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Purpose (ideally): recover primary particle properties (arrival 
direction, energy, mass, …) as function of observables.

Observables in SD:
• Time series of the SD signals

Instruments:
• SD Monte-Carlo (EAS development and detector response) 
• Artificial neural network (NN) 
• Can describe any continuous function of input data 
• Can be tuned using examples generated using Monte-Carlo

Event reconstruction
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In real life:  
• observables depend on unknown/random factors 
• NN function defines optimal test statistic 
• obtain corrections to parametric reconstruction

Machine learning approach
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Method in nutshell
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• Extract useful detector features using 1-D convolutions 
• Treat detector network as a multichannel image using 2D 
convolution layers

M. Erdmann et al, Astropart.Phys. 97 (2018) 46-53



02/02/22 Oleg Kalashev ML for Cosmic Ray Air Showers Workshop  

event data

Dimensions: 
(N,N,Т,2)

N=4-8, T=128-256

detector 
layers

Waveform

SD reconstruction NN architecture

10

Standard SD 
reconstruction is used to 
center image around 
shower core



02/02/22 Oleg Kalashev ML for Cosmic Ray Air Showers Workshop  

SD reconstruction NN architecture
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• waveform encoder extracts 
useful features from 
readings of the two SD 
station layers  

• the extracted features are 
passed to 2D-convolutional 
network along with SD 
station properties 

• event features extracted by 
convolutional network are 
analysed along with 14 
composition sensitive 
variables in the dense layer 
part of the model

D. Ivanov et al, Mach.Learn.Sci.Tech. 2 (2021) 1, 015006
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SD station features
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• Detector signal saturation flag 

• If detector is excluded from geometry fit (affected by random 
muon) 

• x relative to shower core 

• y relative to shower core 

• z detector position altitude relative to common level 

• detector signal, MIP 

• time of the plane front arrival 

• time of the waveform relative to the plane front

Produced by standard reconstruction procedure
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Event features

13

Produced by standard reconstruction procedure
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Training the model
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• Minimizing mean square error 
• Adaptive learning rate (adadelta optimizer arxiv 1212.5701) 
• Number of training samples ~ 106 (100 GB data) - do not 
fit into RAM). hdf container is used и generator API in keras 

• Number of weights to learn 105 - 106 
• Regularization to avoid overfitting: 
• L2 
• dropout  
• noise layers 

• Optimizing network architecture hyper-parameters 
(ray.tune & hyperopt) 

• Hardware: NVIDIA GTX-2080 GPU 
• Instruments: python, numpy, tensorflow, keras, h5py
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EAS modelling
• MC: CORSIKA 

• HE hadronic interactions: QGSJETII-03 and QGSJETII-04 (test set only) 

• LE hadronic interactions: FLUKA 

• EM processes: EGS4 

• Detector response: GEANT4  

• Event sampling: 

• Energy sampling E-1 

• Mass composition: H, He, N, Fe (1:1:1:1)  

• Isotropic primary flux with zenith angles < 45 degrees 

• Standard energy spectrum reconstruction cuts applied

15

T. Abu-Zayyad et al. Astrophys. J., 768:L1, 2013 
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Reconstruction comparison

16

Explained variance score
EV (y, ŷ) = 1� V ar(y � ŷ)

V ar(y)
y

ŷ

- true value of quantity being predicted (in our case, error 
of parametric reconstruction)
- model estimate of y

in presence of unavoidable uncertainty
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Explained variance score

EV (y, ŷ) = 1� V ar(y � ŷ)

V ar(y)
y

ŷ

- true value of quantity being predicted (in our case, error 
of standard reconstruction)
- model estimate of y

More visually:  
Compare error distribution 
in two approximations

in presence of unavoidable uncertainty
How to see that model does job

17
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Explained variance score

EV (y, ŷ) = 1� V ar(y � ŷ)

V ar(y)
y

ŷ

- true value of quantity being predicted (in our case, error 
of standard reconstruction)
- model estimate of y

in presence of unavoidable uncertainty
How to see that model does job
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Explained variance for directional vector reconstruction
(EVX + EVY + EVz)/3
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Arrival direction reconstruction

19

E > 10 EeV  E > 57 EeV

Proton Monte Carlo event set, QGSJETII-03 hadronic interaction model

Zenith angle reconstruction error distribution
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Arrival direction reconstruction
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E > 10 EeV  E > 57 EeV

Proton Monte Carlo event set, QGSJETII-03 hadronic interaction model

Angular distance between true and reconstructed arrival 
direction
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Arrival direction reconstruction

21

Proton and iron Monte Carlo event sets

Angular resolution dependence on energy

 QGSJETII-03  QGSJETII-04
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Arrival direction reconstruction
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Proton and iron Monte Carlo event sets

Angular resolution dependence on the number of detector 
stations triggered

 QGSJETII-03  QGSJETII-04
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Energy reconstruction

23

proton Monte Carlo event set

 QGSJETII-03  QGSJETII-04

Energy reconstruction error distribution

Both bias and variance decreased

Systematic uncertainty due to hadronic model choice is comparable
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Energy reconstruction

24

 QGSJETII-03  QGSJETII-04

proton Monte Carlo event set

σ(LogE − LogEMC)
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Conclusions

25

Energy reconstruction 
+  log(E) resolution relative improvement  is about 20% 

—  systematic bias due to uncertainty in the hadronic interaction model (or 
primary particle mass) is comparable

Arrival direction reconstruction 
+  20-25% improvement in angular resolution 

+  we don’t see any systematic bias due to uncertainty in the hadronic 
interaction model 
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Conclusions
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Energy reconstruction 
+  log(E) resolution relative improvement  is about 20% 

—  systematic bias due to uncertainty in the hadronic interaction model (or 
primary particle mass) is comparable

Arrival direction reconstruction 
+  20-25% improvement in angular resolution 

+  we don’t see any systematic bias due to uncertainty in the hadronic 
interaction model 

Mass composition study 
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Mass composition study

27

Mass reconstruction on event by event basis: 

- Classic regression task or classification task for N 
nuclei 

- With p,He,N,Fe nuclei and NN described above we get 
accuracy ~ 35% (25% is random model result) 

- Showers initiated by different nuclei are similar and 
highly stochastic. Primary particle mass mainly affects 
the expectation of the first interaction point depth 
(random quantity) 

- with given observables there is no way to reconstruct 
primary particle mass on event by event basis
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Mass composition study

28

Mass reconstruction on event by event basis: 

- Classic regression task or classification task for N 
nuclei 

- With p,He,N,Fe nuclei and NN described above we get 
accuracy ~ 35% (25% is random model result) 

- Showers initiated by different nuclei are similar and 
highly stochastic. Primary particle mass mainly affects 
the expectation of the first interaction point depth 
(random quantity) 

- with given observables there is no way to reconstruct 
primary particle mass on event by event basis
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Mass composition study

29

Aim: estimate mass composition for a set of events:

- Train NN to reconstruct primary particle 
- Use NN-classifier output as “optimal” composition 

sensitive observable
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Mass composition study

30

Aim: estimate mass composition for a set of events:

How to recover composition from model predictions:

- correct fractions using model confusion matrix (linear model) 
- use some nonlinear model 

Final result accuracy strongly depend on classifier accuracy 
 - first enhance classifier

   - predicted fractions of nuclei in control set 
  - true fractions of nuclei in control set

ypr
ytrue

ypr = Cytrue

ycorrected = C−1ypr

- Train NN to reconstruct primary particle 
- Use NN-classifier output as “optimal” composition 

sensitive observable

- apply classifier to each individual event and count fractions 
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Mass composition study
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Aim: estimate mass composition for a set of events:

How to recover composition from model predictions:

Final result accuracy strongly depend on classifier accuracy 
 - first enhance classifier

- Train NN to reconstruct primary particle 
- Use NN-classifier output as “optimal” composition 

sensitive observable

- apply classifier to each individual event and count fractions 
- correct fractions using model confusion matrix (linear model) 
- use some nonlinear model 

   - predicted fractions of nuclei in control set 
  - true fractions of nuclei in control set

ypr
ytrue

ypr = Cytrue

ycorrected = C−1ypr
Problems: • strong dependence of  

on control dataset 
• negative predictions

C−1
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Mass composition study

32

Aim: estimate mass composition for a set of events:

How to recover composition from model predictions:

Final result accuracy strongly depend on classifier accuracy 
 - first enhance classifier

- Train NN to reconstruct primary particle 
- Use NN-classifier output as “optimal” composition 

sensitive observable

Input:  - average predicted “probabilities” for class  
and their variance for  
  

  - true fractions of nuclei

E(pA), Var(pA) A
A = p, He, N, Fe

ytrueOutput:

- apply classifier to each individual event and count fractions 
- correct fractions using model confusion matrix (linear model) 
- use some nonlinear model 
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Mass composition study

33

Aim: estimate mass composition for a set of events:

How to recover composition from model predictions:

Final result accuracy strongly depend on classifier accuracy 
 - first enhance classifier

- Train NN to reconstruct primary particle 
- Use NN-classifier output as “optimal” composition 

sensitive observable

softmax

E(pA), Var(pA) ytrue

10 000 ensembles of events, consisting of 5 000 samples each used for training/validation

- apply classifier to each individual event and count fractions 
- correct fractions using model confusion matrix (linear model) 
- use some nonlinear model 
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Mass composition study

34

Aim: estimate mass composition for a set of events:

How to recover composition from model predictions:

- use model normalised confusion matrix (linear model) 
- use nonlinear model (another neural network ‘converter’)

Final result accuracy strongly depend on classifier accuracy 

- Train NN to reconstruct primary particle 
- Use NN-classifier output as “optimal” composition 

sensitive observable

- try to enhance classifier

- apply classifier to each individual event and count fractions 
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Mass composition study
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Enhanced classifier

●Reconstruction parameters
                                              
+
●Spatial detectors data 
(without waveforms)

                                              
+
●Waveforms from the 
detector with largest signal

                                              
+
●Temporal detector data 
(waveforms only)

Uses

~35K trainable params
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Classifier accuracy (4 components): 40.2%

36

Mass composition study
Separate block performance:
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Classifier accuracy (4 components): 40.2%
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Mass composition study

Mass fraction calculation for two random compositions

Separate block performance:
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Classifier accuracy (4 components): 40.2%
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Mass composition study

Mass fraction calculation accuracy (4 components)
Average absolute error 

based on 2000 test 
ensembles

Separate block performance:

Average absolute error dependence on energy (with ‘converter’ model)
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Systematic uncertainty
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Predictions on mono-composition data simulated using QGSJET-II 04 hadronic interaction model

Mass composition study

averaged predictions of the classifier ‘converter’ predictions

Method application is limited by systematics
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Conclusions

40

Energy reconstruction 
+  log(E) resolution relative improvement  is about 20% 

—  systematic bias due to uncertainty in the hadronic interaction model (or 
primary particle mass) is comparable

Arrival direction reconstruction 
+  20-25% improvement in angular resolution 

+  we don’t see any systematic bias due to uncertainty in the hadronic 
interaction model 

Mass composition study 
 +  Accuracy 7% (for p-He-N-Fe mixtures) 
 —  Method application is limited by systematics
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Search for UHE photons
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Search for UHE photons
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Search for UHE photons

False positive errors have stronger effect on sensitivity 
than false negative

We adjust sample weights: wp/wγ ≃ 10

ξcut
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Search for UHE photons
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Search for UHE photons
Terrestrial Gamma-Ray 
Flashes candidate 
events are time 
correlated with the 
lightnings registered 
by National Lightning 
Detection Network. 
TA collaboration, JGR 
Atmospheres (2020) 

95% CL Limits:
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Appendix

46
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Surface Detector

wireless LAN 
2.4GHz Solar panel 

120W

Scintillation detector

GPS

• 3m2 x 1.2cm x 2 layers 
• WLSF : φ1mm 2cm spacing 
• PMT for each layer

• 12bit 50MHz FADC x 2 layers 
• CPU : Renesas SH4(25MHz) 
• GPS, WLAN-modem 
• Charge controller  11

Surface Detectors
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Problem: how to better take absent/not functioning 
detectors

• The event may occur close to detector network 
boundary 

• Part of detectors may be turned off

SD reconstruction NN architecture

48
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Problem: how to better take absent/not functioning 
detectors

• The event may occur close to detector network 
boundary 

• Part of detectors may be turned off

SD reconstruction NN architecture

49

Dropout, the regularisation method in NN, simulate this 
situation 
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Dealing with absent/not working detectors:
Dropout, the regularisation method in NN
Srivastava et. al JMLR 15 (2014)

• In training mode neurons are switched off with probability p 
• For p=0.5 we train simultaneously 2n thinned neural networks 
• In prediction mode neurons are on but their output weights 
are multiplied by p (we average predictions of thinned nets)

SD reconstruction NN architecture

50
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Input (6,6,128,2)

Conv3D 8x(1,1,4)

Pool3D (1,1,4)
…

(6,6,1,256)

Reshape (6,6,256)

Conv2D

Pool2D
…

1-3 x

1-3 x

Input (6,6,Nd)

Take into account absent/not 
working detectors

Modified dropout

• Weights are corrected using 
fraction of working detectors 

• In training mode part of the 
detectors may be switched 
off as in conventional dropout 
method

Dropout

Concatenate (6,6,256+Nd)

SD reconstruction NN architecture

51
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• 1. Each event must include at least 5 counters. 
• 2. The reconstructed primary zenith angle must be less than 45◦ . 
• 3. The reconstructed event core must be more than 1200 m from edge of the array. 
• 4. Both the timing and lateral distribution fits must have χ 2/degree of freedom value less 
than 4. 

• 5. The angular uncertainty estimated by the timing fit must be less than 5◦ . 
• 6. The fractional uncertainty in S(800) estimated by the lateral distribution fit must be less 
than 25%.

Cuts applied on MC samples.

52
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Search for UHE photons


