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Karlsruhe

Location Karlsruher Institut für 
Technologie

Years in operation 1996…2013

Events recorded 433 M

KASCADE (KArlsruhe Shower Core and Array DEtector)
A 16×16 grid of scintillating detectors 
measuring e/γ, μ energies
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Station

Cluster
Data acquisition

station

Type-1 stations
detect e/γ and muon signals

Type-2 stations
detect only e/γ signals

Schematic view

Event is recorded when ≥ 1 cluster detects a 
signal > certain threshold

Run is a group of events

Hadron calorimeter

200 m
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Online data center
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A.Haungs et al; Eur. Phys. J. C (2018) 78:741;

“The KASCADE Cosmic ray Data Centre KCDC: granting 
open access to astroparticle physics research data”;

(doi: 10.1140/epjc/s10052-018-6221-2)

kcdc.iap.kit.edu



Event example

Arrival times EM energy deposit Muon energy depositns MeV MeV

Experimental features

Reconstructed features

Primary 
particle lg E

Shower core center
(x, y)

Arrival direction
(zenith, azimuth) lg Ne lg Nμ Age

15,31 34,66 m -3,11 m 42,64˚ 120,9˚ 4,44 4,06 1,15 34,70 m
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Approach

Input: Event
3×16×16 experimental features
9 reconstructed features Predict

Target: Primary particle type
Categorical feature (p, He, C, Si, Fe)

Training step CORSIKA simulations (in this presentation EPOS-LHC only)

Validation step Checking out predicted particles spectra. Testing hypotheses

Testing step Revealing the blinded part

Some of our models

• Random Forest classifier (baseline)

• CNN classifier

• Validation on full unblinded dataset

• Validation with data quality cuts

Semi-blind analysis

The whole KASCADE dataset

20%
Unblinded

For tuning

80%
Blinded
For testing
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Random Forest classifier performance

Confusion matrix

Simulated data (EPOS-LHC)

Spectra

Experimental data
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PoS ICRC2021 (2021) 319



Random Forest compared with IceCube collaboration
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IceCube+IceTop reconstruction
Phys. Rev. D 100, 082002 (2019)
• Sibyll 2.1 hadronic model
• 4 mass groups
• ML approach
• Same energy range

Comparison published in
PoS ICRC2021 (2021) 319



CNN
architecture
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CNN performance and comparison to Random Forest
Confusion matrix for 

CNN

Spectra for CNN

Confusion matrix for 

Random Forest

Spectra for Random Forest
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EXEMPLARY SPECTRA

NOT FOR SCIENTIFIC USE



Motivation behind quality cuts
In a simulated event

all detectors have 100% uptime
In a real event

some detectors might go down

Each square shows sum of EM energy deposits
for some run

Solution: drop out unsatisfactory runs

11



Some runs which passed our cuts

Each square shows sum of EM energy deposits
for some run

Same for muons energy
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CNN performance with quality cuts

Spectra for CNN

Data with quality cuts

Spectra for CNN

No quality cuts

Spectra for RF

No quality cuts

1/3 of the full dataset
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EXEMPLARY SPECTRA, NOT FOR SCIENTIFIC USE



Conclusion
• CNN is a promising architecture for KASCADE mass composition analysis

• CNN is sensitive to irregularities in the data as expected

• Application of quality cuts is important for results

• Sophisticated cuts are required to keep sufficient amount of data

• Mass composition study with CNN serves as validation for gamma/hadron classifier 

(see talk by M. Tsobenko).
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