Open questions in deep learning techniques for the radio detection

**Dmitriy Kostunin** 

DESY JetBrains Research

February 3, 2022

Dmitriy Kostunin Open questions in deep learning techniques for the radio detection

This presentation is given on the Workshop on Machine Learning for Cosmic-Ray Air Showers. I have tried to summarize the progress in radio data analysis and include comments appeared during discussion of the talk.

# Quick introduction in radio generation



- Askaryan effect
- Geomagnetic effect



Dmitriy Kostunin

Open questions in deep learning techniques for the radio detection

# Quick introduction in radio detection



# Why do we need machine learning for radio?

- Most of the detectors operate in the low signal-to-noise (SNR) environments
- ▶ Background is not completely white  $\Rightarrow$  limitation to classical methods
- ▶ Radio-frequency interference (RFI) are diverse  $\Rightarrow$  hard to account for all



Dmitriy Kostunin Open questions in deep learning techniques for the radio detection

# First attempts (back in 2015)



arxiv:1701.05158 (Bezyazeekov+ at ECRS2016)

- Simple perceptron (PyBrain): 200 input neurons, 3 layers × 500 each, 1 output
- Amplitudes are not normalized, no augmentation  $\xrightarrow{?}$  non-invariant in (t,A)
- Was not tested on real data

## Autoencoder approach



#### Motivation:

- Signal of interest is compact and short comparing to input waveform
- Convolutional filters effectively store signal and background features
- Can be used as denoiser

### Implementation decisions:

- Size of input waveforms
- Length of convolutional filters
- "Stack more layers" rule should work with large training set

## Autoencoder implementation: Preprocessing of the input waveforms

(based on Shipilov+, but others are very similar)

- Nyquist upsampling
- ► Normalization of amplitudes:  $A(t) \rightarrow \overline{A} \in [0, 1]$ ⇒ amplitude-invariant
- Cropping input to  $\mathcal{O}(1024)$  + augmentation: signal is randomly shifted  $\Rightarrow$  translation-invariant



# Autoencoder implementation: design and training

Your input is welcome!

- ► Filter design
  - ► Use physical input: air-shower pulse and RFI duration!
  - Upper and lower boundaries for kernel size?
  - Constant or variable size?
  - Upsampling might help autoencoder: optimal sampling factor
- Input waveforms
  - Median filter for preprocessing?
  - Sensitivity to narrow-band background
  - Optimal size in samples and nanoseconds
- Training strategy
  - Optimal size of dataset
  - Binning in amplitude/SNR?
  - Including pure noise in training?
  - How to properly include samples with strong pulse-like RFI

## Response and metrics



- Threshold amplitude  $\Leftrightarrow$  5% tolerance to false positives
- Efficiency: N<sub>rec.</sub>/N<sub>tot.</sub>, fraction of events passed the threshold
- ► Purity: N<sub>hit</sub>/N<sub>rec.</sub>, fraction of events with reconstructed position of the peak: |t<sub>rec.</sub> - t<sub>true</sub>| < 5 ns</p>



Dmitriy Kostunin

|                               | Shipilov+                               | Schlüter+           | Rehman+                 |
|-------------------------------|-----------------------------------------|---------------------|-------------------------|
|                               | 1812.03347                              | 1901.04079          | PoS ICRC2021 (2021) 417 |
| Band (MHz)                    | 30-80                                   | 30-80               | 50-350                  |
| Background                    | Real                                    | Simulated           | Simulated*              |
| Normalization                 | [0;1]                                   | [0;1]               | [-1;1]                  |
| Input                         | 4096                                    | 1000                | 1024                    |
| Bin size (ns)                 | 0.3125                                  | 5.6                 | 0.25                    |
| Kernel size                   | $32 { ightarrow} 16 { ightarrow} \dots$ | fixed to 5          | fixed to 256            |
| Kernel size at 1st layer (ns) | 10                                      | 28                  | 64                      |
| Filters/layer                 | $16 { ightarrow} 32 { ightarrow} \dots$ | $16{	o}32{	o}\dots$ | fixed to 8              |
| Layers                        | 3                                       | 5                   | 2                       |
| Training set                  | $\approx$ 15k                           | $\approx$ 70k       | $\approx$ 103k+50k      |
| Tested on real data           | Yes                                     | No                  | No                      |

Current state of autoencoder implementations

\*improved by Kullgren+ (doi:10.5281/zenodo.6011170)

Hereafter we consider only denoisers

# Artificial spectral noise

#### Artifact when high-rate upsampling is applied (Shipilov+):

- Nyquist upsampling adds zero-amplitude higher frequencies
- Reconstruction contains noise in-between initial bins
   artificial noise at higher frequencies

#### Less impact for non-upsampled (Schlüter+) or low-rate upsampled (Rehman+) signals:



Dmitriy Kostunin

## Antenna and phase response invariance

Simulated response **Actual response** 1.0 1.0 0.5 0.5 normalized amplitude normalized amplitude ۸ 0.0 0.0 -0.5-0.5-10-1010 20 20 -1010 20 20 time (ns) time (ns)

- Calibration does not describe hardware response precisely
- Autoencoder trained by Shipilov+ works surprisingly well both with and without antenna response
- Indication of phase shift invariance
- Implication of this feature?

## Amplitude reconstruction

- At low SNR normalization is done w.r.t. noise peaks
- Due to normalization information about absolute amplitude is erased
- ► Is it fundamental problem for only this architecture or general one?



# Hybrid approach: autoencoder + interferometry

Synthesis of signals using reconstructed arrival times







Dmitriy Kostunin

# Next steps

### Improvements of the current networks

- ► Alternative architectures, e.g. U-Net, RNN, transformers, LIGO experience
- Adding more channels, wavelets, spectral information
- Integration of modern tools for interpretation, e.g. SHAP
- Spatial information  $\Rightarrow$  combination with GNN
- ► Timing information ⇒ combination with CNN encoding sky noise

### Compressed neural networks for radio trigger on FPGA

- hls4ml: firmware implementations of machine learning algorithms using high level synthesis language (HLS)
- Intensively used in collider physics
- Successfully tested on old ARIANNA hardware (arXiv:2112.01031)
- ► The only solution for ultra-large scale sparse arrays featuring single antennas

# Path to universal network

Search for Holy Grail (and reduce carbon footprint of CoREAS)

### Start from GAN?

- High-dimension space:  $A(\vec{r}, t)$
- Likely more accurate than analytical models, but still not good enough
- Ideal for design studies and template production
- Can be used for RFI and air-shower pulses generation

### Ultimate denoiser

- Universality in background? RFI library?
- ► Train in frequency domain
  - Do they adjustable to every frequency band?
  - CNN will likely not work. Architecture?
  - $F_{\text{true}} = F_{\text{meas}} * F_{\text{IRF}}^{-1}$ . How to propagate  $F_{\text{IRF}}$  to NN?

# Conclusion

- Radio community has successfully learned how to use neural networks
- Several architectures are implemented, but only one tested in production
- The recipes for optimal design are not well defined
- ► Few unique features of radio autoencoders have already been discovered
- ► The killer feature of technology is FPGA trigger for stand-alone antennas
- Training in the frequency domain is almost unexplored:
  - Representation of signals: complex numbers? phase-amplitudes?
  - Treatment of noise? CNN for dynamic spectra? LIGO approach?
  - Efficient phase unwrapping?