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Introduction

This presentation is given on the Workshop on Machine Learning

for Cosmic-Ray Air Showers. I have tried to summarize the

progress in radio data analysis and include comments appeared

during discussion of the talk.
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Quick introduction in radio generation
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Quick introduction in radio detection
CODALEMA
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Why do we need machine learning for radio?
I Most of the detectors operate in the low signal-to-noise (SNR) environments
I Background is not completely white⇒ limitation to classical methods
I Radio-frequency interference (RFI) are diverse⇒ hard to account for all
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First attempts (back in 2015)

True (simulated) signal

True signal + noise trace
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fit

arxiv:1701.05158 (Bezyazeekov+ at ECRS2016)

I Simple perceptron (PyBrain): 200 input neurons, 3 layers × 500 each, 1 output

I Amplitudes are not normalized, no augmentation ?−→ non-invariant in (t,A)
I Was not tested on real data
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Autoencoder approach

Motivation:
I Signal of interest is compact and

short comparing to input waveform
I Convolutional filters effectively store

signal and background features
I Can be used as denoiser

Implementation decisions:
I Size of input waveforms
I Length of convolutional filters
I “Stack more layers” rule

should work with large training set
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Autoencoder implementation: Preprocessing of the input waveforms
(based on Shipilov+, but others are very similar)

I Nyquist upsampling
I Normalization of amplitudes: A(t)→ Ā ∈ [0,1]
⇒ amplitude-invariant

I Cropping input to O(1024) + augmentation: signal is randomly shifted
⇒ translation-invariant
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Autoencoder implementation: design and training
Your input is welcome!

I Filter design
I Use physical input: air-shower pulse and RFI duration!
I Upper and lower boundaries for kernel size?
I Constant or variable size?
I Upsampling might help autoencoder: optimal sampling factor

I Input waveforms
I Median filter for preprocessing?
I Sensitivity to narrow-band background
I Optimal size in samples and nanoseconds

I Training strategy
I Optimal size of dataset
I Binning in amplitude/SNR?
I Including pure noise in training?
I How to properly include samples with strong pulse-like RFI
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Response and metrics
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I Threshold amplitude⇔ 5% tolerance to false positives

I Efficiency: Nrec./Ntot.,
fraction of events passed the threshold

I Purity: Nhit/Nrec., fraction of events with
reconstructed position of the peak: |trec.− ttrue|< 5 ns
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Current state of autoencoder implementations
Shipilov+ Schlüter+ Rehman+
1812.03347 1901.04079 PoS ICRC2021 (2021) 417

Band (MHz) 30–80 30–80 50–350
Background Real Simulated Simulated*
Normalization [0;1] [0;1] [−1;1]
Input 4096 1000 1024
Bin size (ns) 0.3125 5.6 0.25
Kernel size 32→16→ ... fixed to 5 fixed to 256
Kernel size at 1st layer (ns) 10 28 64
Filters/layer 16→32→ ... 16→32→ ... fixed to 8
Layers 3 5 2
Training set ≈15k ≈70k ≈103k+50k
Tested on real data Yes No No

*improved by Kullgren+ (doi:10.5281/zenodo.6011170)

Hereafter we consider only denoisers
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Artificial spectral noise

Artifact when high-rate upsampling is applied (Shipilov+):
I Nyquist upsampling adds zero-amplitude higher frequencies
I Reconstruction contains noise in-between initial bins
⇒ artificial noise at higher frequencies

Less impact for non-upsampled (Schlüter+) or low-rate upsampled (Rehman+) signals:
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Antenna and phase response invariance

Simulated response Actual response
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I Calibration does not describe
hardware response precisely

I Autoencoder trained by Shipilov+
works surprisingly well both
with and without antenna response

I Indication of phase shift invariance
I Implication of this feature?
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Amplitude reconstruction

I At low SNR normalization is done w.r.t. noise peaks
I Due to normalization information about absolute amplitude is erased
I Is it fundamental problem for only this architecture or general one?
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Hybrid approach: autoencoder + interferometry
Synthesis of signals using reconstructed arrival times
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Next steps
Improvements of the current networks
I Alternative architectures, e.g. U-Net, RNN, transformers, LIGO experience
I Adding more channels, wavelets, spectral information
I Integration of modern tools for interpretation, e.g. SHAP
I Spatial information⇒ combination with GNN
I Timing information⇒ combination with CNN encoding sky noise

Compressed neural networks for radio trigger on FPGA
I hls4ml: firmware implementations of machine learning algorithms

using high level synthesis language (HLS)
I Intensively used in collider physics
I Successfully tested on old ARIANNA hardware (arXiv:2112.01031)
I The only solution for ultra-large scale sparse arrays featuring single antennas
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Path to universal network
Search for Holy Grail (and reduce carbon footprint of CoREAS)

Start from GAN?
I High-dimension space: A(~r, t)
I Likely more accurate than analytical models, but still not good enough
I Ideal for design studies and template production
I Can be used for RFI and air-shower pulses generation

Ultimate denoiser
I Universality in background? RFI library?
I Train in frequency domain

I Do they adjustable to every frequency band?
I CNN will likely not work. Architecture?
I Ftrue = Fmeas ∗F−1

IRF. How to propagate FIRF to NN?
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Conclusion

I Radio community has successfully learned how to use neural networks
I Several architectures are implemented, but only one tested in production
I The recipes for optimal design are not well defined
I Few unique features of radio autoencoders have already been discovered
I The killer feature of technology is FPGA trigger for stand-alone antennas

I Training in the frequency domain is almost unexplored:
I Representation of signals: complex numbers? phase-amplitudes?
I Treatment of noise? CNN for dynamic spectra? LIGO approach?
I Efficient phase unwrapping?
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