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Low-Energy Cosmic-Ray Events at IceCube
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Low-energy trigger used for CR 
spectrum down to 250 TeV

Main contribution to 
uncertainty: composition

Idea: improve this previous 
Random Forest analysis to 
other techniques and include 
in-ice signature
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CR-induced air showers reaching down to 
O(105 GeV) primary energy can trigger 
surface station pair(s) in dense center (InFill)

 Aim reconstruction of

– shower core position

– zenith angle θ

– primary energy

– type of primary CR
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Low-Energy Cosmic-Ray Events at IceCube
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CORSIKA simulations of 4 primary types: Proton, Helium, Oxygen and Iron

 

Sibyll 2.1 interaction model

Energy range 5.0 ≤ log
10

(E/GeV) ≤ 8.0

Amount of events:

– H: 3432 (in-ice: 1877)

– He: 3479 (in-ice: 1967)

– O: 3180 (in-ice: 1899)

– Fe: 2993 (in-ice: 1816)

– Σ: 13084 (in-ice: 7559)

01.02.20225

Data Used

H
Hydrogen

1 1

O
Oxygen

16 8

Fe
Iron

56 26

He
Helium

4 2
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Boosted Decision Trees

01.02.2022
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+ +
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Two independent models for reconstruction of x- and y-coordinate

Input features:

– x-coordinate of center-of-gravity (COG)

– y-coordinate of COG

– cos of zenith from plane-front fit

– log of number of stations with HLC hits

Target: Monte-Carlo x resp. y

01.02.20228

BDT for Shower Core
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GradientBoostingRegressor

Model hyperparameters:

– Loss: least squares

– sqrt(4) = 2 features considered at 
each split

– early stopping (when loss 
improvement < 1e-5 for 20 
iterations)

– subsample of 90% for fitting

01.02.20229

BDT for Shower Core

Test size of 40%

Randomized search (5-fold cross-
validation, 100 parameter combinations) 
for

– Learning rate (learning_rate)
0.001 – 0.1

– Number of trees (n_estimators)
100 – 2000

– Maximal tree depth (max_depth)
1 – 15

– Minimal number of samples required 
for split (min_samples_split)
2 – 20

Train Test
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BDT for Shower Core

The top 10 highest CV-scores 
with standard deviation

Score: coefficient of 
determination

Top BDT:
learning rate: 0.0178
max depth: 7
min sam. split: 15
# trees: 1795

Train score: 92.15%
Test score: 82.22%

Top BDT:
learning rate: 0.0057
max depth: 6
min sam. split: 18
# trees: 1731

Train score: 97.45%
Test score: 96.50%
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BDT for Shower Core

Test set
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BDT for Shower Core

standard IceTop reco
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BDT for Zenith Angle

Input features:

– x-coordinate of center-of-gravity (COG)

– y-coordinate of COG

– zenith from plane-front fit

– azimuth from plane-front fit

– average z in shower coordinates (ZSC_avg)

– log of number of stations with HLC hits

Target: Monte-Carlo zenith
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BDT for Zenith Angle Top BDT:
learning rate: 0.0322
max depth: 6
min sam. split: 11
# trees: 1421

Train score: 90.54%
Test score: 87.21%

GradientBoostingRegressor

Model hyperparameters:
same as for shower core (sqrt(6) = 2)

Test size: same

Randomized search: same
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BDT for Zenith Angle

IceCube: Work in Progress

IceCube: Work in ProgressIceCube: Work in Progress
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max depth: 6
min sam. split: 11
# trees: 1421

Train score: 90.54%
Test score: 87.21%

GradientBoostingRegressor
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BDT for Zenith Angle
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BDT for Zenith Angle
Test set
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BDT for Primary Energy

Karlsruhe Institute of Technology

Input features:

– cos of previously reconstructed zenith θ
reco

– log of number of stations with HLC hits

– log of sum of all HLC charges

– log of sum of 2 highest HLC charges

– mean distance of hit tanks from reconstructed shower core (R
mean

)

– R
mean

 weighted with corresponding tank charges

– log of number of hit in-ice DOMs

Target: Monte-Carlo energy
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BDT for Primary Energy

Karlsruhe Institute of Technology

GradientBoostingRegressor

Model hyperparameters:
same as for shower core (sqrt(7) = 2)

Test size: same

Randomized search: same

IceCube: Work in Progress

IceCube: Work in Progress

IceCube: Work in Progress
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BDT for Primary Energy

Karlsruhe Institute of Technology

Top BDT:
learning rate: 0.0307
max depth: 9
min sam. split: 8
# trees: 374

Train score: 99.28%
Test score: 89.77%
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BDT for Primary Energy

Karlsruhe Institute of Technology

Test set

IceCube: Work in Progress
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BDT for Primary Type (Classification)

Karlsruhe Institute of Technology

Input features:
selected partly according to high figure-of-merit (FOM) value

computed for all potential features and primary pair combinations

Target: Monte-Carlo particle

Σ(Q
HLC
)

Σ(Q
in-ice
)

IceCube: Work in Progress
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BDT for Primary Type (Classification)

Karlsruhe Institute of Technology

Input features:
– log of millipede energy loss dE/dX at 1500 m depth

– log(dE/dX
1800 m

)

– log(dE/dX
1800 m

 – dE/dX
1500 m

)

– log of the highest stochastic energy loss

– log of the average stochastic energy loss

– log of the total stochastic energy loss

– log of the difference in total stochastic energy loss 
for standard and strong selection

– log of the difference in highest stochastic energy 
loss for standard and strong selection

– difference in average stochastic energy loss for 
standard and strong selection

– difference in average stochastic loss 
depth for standard and strong 
selection

– log of number of hit in-ice DOMs

– z-coordinate of the in-ice COG

– z-coordinate of the lowest hit DOM

– difference of z-coordinated of COG 
and lowest hit DOM

– ratio of the logs of total detected 
charge in-ice and on the surface

– log of the ratio of total detected 
charge in-ice and on the surface

– previously reconstructed energy

Phys. Rev. D 100.8 (2019): 082002

<dE/dX (X=1800 m)>
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BDT for Primary Type (Classification)

Karlsruhe Institute of Technology
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Phys. Rev. D 100.8 (2019): 082002

<dE/dX (X=1800 m)>
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BDT for Primary Type (Classification)

Karlsruhe Institute of Technology

GradientBoostingClassifier

Model hyperparameters:
same except:

– Loss: deviance

– sqrt(17) = 4 features considered at each split

Test size of 40%

Randomized search: same except stratified 5-fold CV
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BDT for Primary Type (Classification)

Karlsruhe Institute of Technology

Top BDT:
learning rate: 0.0492
max depth: 7
min sam. split: 3
# trees: 1620

Train score: 86.68%
Test score: 37.90%

IceCube: Work in Progress

IceCube: Work in Progress

IceCube: Work in Progress

IceCube: Work in Progress
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BDT for Primary Type (Classification)

Karlsruhe Institute of Technology

IceCube: Work in Progress
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BDT for Primary Type (Classification)

Karlsruhe Institute of Technology

Model output (‘probability’) for
assignment as H, He, O or Fe for
protons (KDE)
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BDT for Primary Type (Classification)

Karlsruhe Institute of Technology

Model output (‘probability’) for
assignment as H, He, O or Fe for
protons (KDE)

model output
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BDT for Primary Type (Classification)

Karlsruhe Institute of Technology

IceCube: Work
in Progress

IceCube: Work
in Progress

IceCube: Work
in Progress

model output

model outputmodel output

model output
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Convolutional Neural Networks

01.02.2022
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Arranging IceCube in a CNN
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Arranging IceCube in a CNN

DOM 61
DOM 62
DOM 63
DOM 64 DOM 61

DOM 62
DOM 63
DOM 64

2D Convolution (10x10, 4 „color“ channels, 
kernel 3x3, stride 1, padding 1 → 10x10)
ReLU activation
Batch Normalization

Max Pooling (kernel size 2x2, stride 2)

Dropout

1D Convolution (in_shape 3, 4 „color“ 
channels, kernel size 2, stride 1, padding 1 
→ out_shape 4)
ReLU activation, Batch Normalization
1D Convolution (in_shape 4, kernel size 3, 
stride 1, padding 1 → out_shape 4)
ReLU activation, Batch Normalization

Dropout

IceTop IceTop InFill
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Arranging IceCube in a CNN

...

DOM 60
DOM 59
DOM 58

DOM 1
DOM 2

DeepCore not included

3D Convolution (60x10x10, 1 „color“ 
channel, kernel 3x3x3, stride 1, padding 1 
→ 60x10x10)
ReLU activation
Batch Normalization

Max Pooling (kernel size 2x2x2, stride 2)

Dropout

in-ice
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IceCube in a CNN

IceTop Ax5x5 → flatten

IceTop InFill Bx4 → flatten

in-ice Cx30x5x5 → flatten

  concatenate
→ fully-connected ( in_nodes: D, 

out_nodes: 64)
→ ReLU, dropout
→ fully-connected( in_nodes: 64,

out_nodes: 32)
→ ReLU
→ fully-connected( in_nodes: 32,

out_nodes: 1)

e.g. θ or corex



01.02.2022 Julian Saffer, CR ML Workshop Newark, DE, USA Karlsruhe Institute of Technology37 Julian Saffer, CR ML Workshop Newark, DE, USA Karlsruhe Institute of Technology

Summary

01.02.2022

BDT models are fast to train and stable (little 
variation in top 10)

Primary energy prediction works good

Hope on CNN for better core, zenith and mass
estimation
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Outlook

01.02.2022

Way more MC necessary
(currently only ~7500 coincident events)

CORSIKA simulations ongoing (26680 events in range
4.0 ≤ log

10
(E/GeV) ≤ 8.0, Sibyll 2.3c and FLUKA)

Detector (surface and in-ice) response simulation pending

Improvement of CNN structure and better training with 
more data
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Backup

Julian Saffer, CR ML Workshop Newark, DE, USA Karlsruhe Institute of Technology01.02.2022
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Data used

3432 2993

3479 3180

1877

1967 1899

1816H

He

O

Fe

all w/ in-ice
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BDT for Shower Core

x (from RandomSearch) y (from RandomSearch)

Takes ~ 8 min on 4 CPUs (3800 MHz, cobalt)

IceCube: Work in Progress

IceCube: Work in ProgressIceCube: Work in Progress IceCube: Work in Progress IceCube: Work in Progress

IceCube: Work in Progress
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BDT for Shower Core

x y

IceCube: Work in Progress

IceCube: Work in Progress

IceCube: Work in Progress
IceCube: Work in Progress IceCube: Work in Progress

IceCube: Work in Progress
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BDT for Zenith Angle

Takes ~ 7 min on 4 CPUs (cobalt)

IceCube: Work in Progress

IceCube: Work in ProgressIceCube: Work in Progress
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BDT for Primary Energy

Takes ~ 7 min on 4 CPUs (cobalt)

IceCube: Work in Progress

IceCube: Work in Progress

IceCube: Work in Progress
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BDT for Primary Type

Takes ~ 40 min on 4 CPUs (cobalt)

IceCube: Work in Progress

IceCube: Work in Progress IceCube: Work in Progress
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BDT for Primary Type

FOM weighting:


	Folie 1
	Sample headline: Arial 24pt bold_clipboard0
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Sample headline: Arial 24pt bold
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46

