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About me / Outline

Deep learning developer at JB Research and JB Computational Arts
5 years of experience in commercial computer vision (CV)

Started working with air showers about a year ago

Analyzing KASCADE archive data using deep neural networks

In this talk | will try to highlight some of the most promising deep learning

techniques that could be applied to air showers



Vision Transformers (ViT) and Attention MLPs

e Just like the original natural
language processing (NLP)

Tra n SfO rmers , VI TS are on Iy u SI n g Vision Transformer (ViT) Transformer Encoder
self-attention and feedforward uLP
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Vision Transformers (ViT) and Attention MLPs

e Unlike CNNs, ViTs and MLPs are
using spatial information

e One of the key rationales for
CNNs (back in AlexNet, LeNet
time) was the locality of pixel
dependencies which is not
always the case with air showers
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ViTs and CNNSs - perception differences

e V/iT incorporates more global
information than ResNet at
lower layers

e Skip connections in ViT are
even more influential than in
ResNets

e ViTs internal representations
are similar to MLP-Mixer
despite the latter not using
attention layer VIT-L16 layer ResNet5Ox1

Mixer L/16 vs ViT-L16 Mixer L/16 vs ResNet50x1

layer Mixer-L/16
layer Mixer-L/16




Unsupervised pre-training
e Becoming increasingly popular since the GPT-1 release
e First was applied to NLP tasks, now expanding to CV as well

e Relevant when unlabeled data are abundant while labeled data are scarce

e For air showers, it allows to employ experimental data



Unsupervised pre-training
e Becoming increasingly popular since the GPT-1 release
e First was applied to NLP tasks, now expanding to CV as well

e Relevant when unlabeled data are abundant while labeled data are scarce

e For air showers, it allows to employ experimental data

e Potentially increases robustness of the model and/or decreases the required

amount of training data

e Application to air showers is nontrivial




Unsupervised pre-training

Interestingly, there are also some

evidences that pre-training on

targeted (i.e. labeled) dataset also

improves model performance

Box mAP
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Unsupervised pre-training - Barlow Twins

e Requires a pair of identical Representations
neural networks (for transfer tasks)
e Twin neural networks Distorted I _
compute embedding for images ; Embedeings N
the same (but differently Empirical Target
. A A Cross-corr. cross-corr.
augmented) images Y 7
: Images
e Compared to contrastive ‘ I
loss, doesn’t require lots of T T Y ‘CBT
negative samples per X fg

batch or low-dimensional
embeddings yB ZB/ .featur.e
e Tricky to apply to dimension

air-showers - very few Encoder  Projector
possible augmentations




Unsupervised pre-training - Masked Autoencoders (MAE)

e Random patches of the image are being
masked (at a very high proportion)

e Visible patches are feed to the encoder

e Lightweight decoder reconstructs the whole
image from patches and mask tokens

encoder
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e After pre-training, encoder is being used on
unmasked images, decoder is discarded

e Requires relatively high-dimensional
redundant input
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Unsupervised pre-training - Masked Autoencoders (MAE)

e Random patches of the image are being
masked (at a very high proportion)

e Visible patches are feed to the encoder
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e Lightweight decoder reconstructs the whole #°
image from patches and mask tokens

e After pre-training, encoder is being used on . . ; . . : . .

unmasked images, decoder is discarded i 2 20 wooow W L %0 o
masking ratio (%)

e Requires relatively high-dimensional
redundant input
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Unsupervised pre-training - other approaches

These approaches seem to be fundamentally
incompatible with the air shower domain and
won’t be covered in detail:

Weakly Supervised Pre-Training - uses
noisy semantic learning signal (hashtags)
associated with the data

Contrastive Language-Image Pre-Training -
probably one of the most revolutionary
zero-shot pre-training approaches, which,
however, requires natural language
supervision.
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Unsupervised pre-training - other approaches

These approaches seem to be fundamentally
incompatible with the air shower domain and
won’t be covered in detail:

Weakly Supervised Pre-Training - uses
noisy semantic learning signal (hashtags)
associated with the data

Contrastive Language-Image Pre-Training -
probably one of the most revolutionary
zero-shot pre-training approaches, which,
however, requires natural language
supervision.
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Cosine LR schedule with warm restarts
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Multiple Augmentation Samples Per Image Decreases Test Error

e Model shows better performance with fixed batch size as the augmentation multiplicity rises
(and as amount of unique samples goes down)

e Model shows better performance with fixed amount of unique samples as the augmentation
multiplicity rises (and as batch size grows)

e Bigger batch size requires higher LR
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Overinterpretation reveals image classification model pathologies

e In some cases high accuracy of the model could be
explained by overinterpreting unintended
nonsensical patterns (90%+ confidence correct
validation samples below)

catamaran giant panda golden retriever traffic light street sign

parachute pizza
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Overinterpretation reveals imaqge classification model pathologies

airplane  automobile bird frog horse ship truck
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Overinterpretation reveals image classification model pathologies

Easy to implement alternative sanity check: freezing
the model weights + adding trainable binary

classification head

High accuracy on MC/Exp classification will indicate
that the model latent space preserves information

about discrepancies between datasets
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Generalization Beyond Overfitting

e After the memorization of training
samples, validation accuracy
sometimes suddenly begins to
increase toward perfect generalization

e This phenomenon occurs under
various circumstances but only with
synthesized datasets
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Accuracy

Generalization Beyond Overfitting
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Conclusions

e Non-convolutional architectures are becoming increasingly popular

e \While being a very powerful technique, self-supervised pre-training is

nontrivial to apply to air showers

e Some of the covered methods could improve model efficiency and/or

interpretability

e Feel free to reach us out:

o astroparticle@jetbrains.com

o https://research.jetbrains.org/groups/astroparticle-physics/
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