NNMFit – A DiffuseNuMu Analysis Tool

Erik Ganster, Richard Naab

Outline

- Introduction
 - What is NNMFit?
 - $-\,$ Where to find it?
- What does NNMFit do?
- How to use it
- Recent developments
- Summary

NNMFit – What it is and Where to find

- Theano-based analysis framework for diffuse analyses
- Developed for the measurement of the energy spectrum of astrophysical muon-neutrinos
- · Very modular and configurable setup
- Growing userbase:
 - Christian: diffuse + galactic plane
 - ✓ Jöran: 9.5yr diffuse numu
 - Sally: Upgoing Muon Cross Section
 - Sarah: Intermediate energy cross-section
 - Richard, Zelong, Erik: (first) GlobalFit combining tracks and cascades
 - > You?

- Now living in the new IceCube github organization: <u>icecube/NNMFit</u>
- Richard started working on an NNMfit wiki (also on github): <u>NNMFit/wiki</u>
- Slack channel #nnmfit
- Increased development activities since the GlobalFit efforts started

Binned Likelihood Analyses - Conceptually

- Comparison of a MonteCarlo prediction with either real, pseudo or Asimov data an analysis histogram using some Likelihood function:
 - 1. Filling the data into the analysis histogram
 - 2. Calculate MonteCarlo prediction for a specific hypothesis
 - 3. Compute Likelihood
- The MonteCarlo prediction consists of several components which themselves can depend on multiple parameters each
 - Astrophysical Neutrino Flux
 - Conventional Atmospheric Flux
 - Prompt Neutrino Flux
 - Atmospheric Muons
 - ...

Binned Likelihood Analyses - Conceptually

- Comparison of a MonteCarlo prediction with either real, pseudo or Asimov data an analysis histogram using some Likelihood function:
 - 1. Filling the data into the analysis histogram
 - 2. Calculate MonteCarlo prediction for a specific hypothesis
 - 3. Compute Likelihood
- The MonteCarlo prediction consists of several components which themselves can depend on multiple parameters each
 - Astrophysical Neutrino Flux
 - Conventional Atmospheric Flux
 - Prompt Neutrino Flux
 - Atmospheric Muons
 - ...

- NNMFit builds a computational Theano-graph to calculate the Likelihood
 - This graph is a function of all parameters that are used to model all flux components, detector systematics, ...
- Why Theano?
 - Fast, internal C++ compilation of the graph
 - Allows gradient calculation of the Likelihood function with respect to the input parameters

NNMFit – Overview

6

- Main input for NNMFit is a pandas dataframe, containing all reco + MC truth quantities
 - It also includes e.g. conventional + prompt neutrino baseline weights
- Based on this dataframe all flux + detector systematic parameters get applied by modifying the baseline weight within the Theano graph
- The analysis histogram is built, and the Likelihood is calculated

NNMFit – Detector Configs

- NNMFit is not limited to a single analysis histogram
 - Historically, multiple histograms were needed to combine IC59, IC79 and IC86
 - "Detector configs" in NNMFit slang
- Global parameters are shared between all detector configs
 - Flux parameters
 - Detector systematics
- For the GlobalFit efforts, we used these detector configs for different event selections:
 - NuMu tracks

. . .

- Cascade signal
- Cascade starting tracks
- Cascade muon selection

- Added python 3 support
- Adopted NNMFit to use SnowStorm simulation sets
 - Read SnowStorm MC and its parameters
 - Re-weighting of SnowStorm MC sets (details later)
- Extended detector_configs capability to deal with multiple event selections in parallel
- Added ability to read MuonGun simulations
 So far, NNMFit has been very streamlined for NuGen
- Updated atmospheric (conventional and prompt) neutrino predictions to the most recent <u>MCEq</u> version
 - NNMFit is not limited to MCEq! <u>NuFlux</u> can easily be added
- Finalized SAY-Likelihood implementation

8

NNMFit – A DiffuseNuMu Analysis Tool for the GlobalFit Diffuse GlobalFit Workshop 2021 | Madison virtual | 05/11/2021 Erik Ganster | Richard Naab

- Main <u>GlobalFit/master</u>branch
 - Development in GlobalFit/dev/... branches, updates to (GlobalFit) master via PullRequests
- Non GlobalFit NNMFit branch <u>main_stable_py3</u>
 - No SnowStorm support, relies on "traditional"/old systematic sets + treatment

NNMFit – SnowStorm Reweighting

- Re-weighting of the SnowStorm parameters within the MC set to some (arbitrary) distribution on analysis level (e.g. normal dist.)
 - Directly yields a MC prediction for a specific choice of nuisance parameters, i.e. the current hypothesis, in the fit
- Currently implemented distribution:
 - Gaussian (configurable width)
 - Uniform/Box
 - Symmetrical Gaussian
 - Ensures a symmetric (with respect to the mean value) range for applying the reweigthing
 - Symmetrical Box
- Both "symmetrical" reweighting functions work; however, they are non continuous functions and therefore cause minimizer issues…

NNMFit and MCEq

- NNMFit uses MCEq to calculate the conventional + prompt neutrino flux weights
- Weight calculation using pre-built 2d-splines
- One spline is a combination of primary CR + hadronic interaction model
 - H4a, H3a, GSt-3gen, GST4-gen
 - SIBYLL2.3c, QGSJET, DPMJET, EPOS-LHC
- Using MSIS00_IC SouthPole atmosphere and averaging the prediction from all months
- Using the Barr/Bartol parameters for modelling uncertainties
- Updated the splines from an old MCEq release to latest v1.2.1 release

Physics

NNMFit – MCEq Splines

- Comparing both splines showed an overall ~10% lower neutrino rate and some shape differences
 - "legacy" splines from mid 2019 (MCEq_RC1)
 - Major rewrite of the MCEq core for v1.0 release
 - Anatoli strongly recommended the use of v1.2.1
- Jöran repeated his fit: No significant change of the signal parameters, only and ~10% increased conv_norm

NNMFit – MCEq Splines

- Comparing both splines showed an overall ~10% lower neutrino rate and some shape differences
 - "legacy" splines from mid 2019 (MCEq_RC1)
 - Major rewrite of the MCEq core for v1.0 release
 - Anatoli strongly recommended the use of v1.2.1
- Jöran repeated his fit: No significant change of the signal parameters, only and ~10% increased conv_norm
- Also re-evaluated the effects of the Barr/Bartol parameters on the neutrino flux

NNMFit – MCEq Splines

- Comparing both splines showed an overall ~10% lower neutrino rate and some shape differences
 - "legacy" splines from mid 2019 (MCEq_RC1)
 - Major rewrite of the MCEq core for v1.0 release
 - Anatoli strongly recommended the use of v1.2.1
- Jöran repeated his fit: No significant change of the signal parameters, only and ~10% increased conv_norm
- Also re-evaluated the effects of the Barr/Bartol parameters on the neutrino flux
- Issue/way to large Barr/Bartol flux gradient in the first downgoing bin...

Interpolate that bin?

NNMFit – Summary and Outlook

- Adopted NNMFit to use SnowStorm simulation sets
 - Read SnowStorm MC and its parameters
 - Re-weighting of SnowStorm MC sets with different distributions
- Extended detector_configs capability to deal with multiple event selections in parallel
 - ✓ Northern_tracks
 - ✓ Cascades
- Updated atmospheric (conventional and prompt) neutrino predictions to the most recent <u>MCEq</u> version
- Finalized SAY-Likelihood implementation
- Started a NNMfit wiki on github: <u>NNMFit/wiki</u>
 Please feel free to edit it!

- Need additional testing of the different reweighting distributions
- NuGen + MuonGun are now implemented: Add CORSIKA for future/more event selections?

- Active development on github <u>icecube/NNMFit</u>
- Check it out and try to use it!
 - Read access for all members of the icecube organization
 - Just ping us in #nnmfit on slack and we will ad you to the NNMFit team so you can create you r own branch

Appendix

NNMFit – Configuration Files

- NNMfit heavily uses config files for configuring the actual analysis, signal hypothesis, nuisance parameters, minimizer settings, ...
- Most important configs:
 - main.cfg
 - analysis_config.yml
 - detector_config.cfg
 - components.yml
- Not going to all all configs in detail here, example with a basic fit and what settings apply in the Hands-On session

Example – Define an Analysis/Event Selection/Detector Configuration

