Thoughts: How does the Working Group Operate with the Global Fit?

Nathan Whitehorn
Michigan State University May 11, 2021
(+ Lu Lu, UW Madison)

Worries We Have and Have Heard

About the global fit:

- Are we just writing one paper to rule them all every few years?
- How do we highlight individual contributions?
- How do we avoid "cog in a machine" feelings among WG members?

About the status quo:

- Hard to do targeted analyses or ask new questions; huge amount of work to endlessly re-constrain conventional atmospheric neutrinos, etc. and doing that requires event selections with broad energy ranges
- Takes too long to get a publication with a new result, especially as we enter sqrt(t)

Goals

- Maintain at least the current opportunities for publications, talks, etc. as well as the role of a diffuse analyzer
- Open up some new opportunities to answer targeted physics questions with less gruntwork in addition to standard, samplefocused papers
- Fill in all the gaps in our knowledge of the diffuse flux!

Our concept

- Global fit is a toolkit, not a paper or an analysis
- Gives you, the analyzer, freedom to lean on previously-known results and mix-and-match them to answer your physics questions, with your paper, without re-inventing the wheel
- Basically the same as how we place priors on charm from some previous diffuse results now, but much better
- Frees analyzers to plug holes in our global understanding (e.g. Yang's targeted PeV muon analysis) without re-controlling atmospheric neutrinos endlessly
- Keys:
- Same rate of papers (per sample, etc.) and structure of papers and authorship as now
- Every paper that comes out of the diffuse group is the best knowledge of the diffuse spectrum we can possibly have

Examples from Other Fields

- This is basically standard practice in cosmology

Figure 24. CMB-S4 constraints on the optical depth and duration of reionization in a joint analysis using the $k S Z$ power spectrum and four-point function.

FIG. 5. Marginalized 2D 68% and 95% posterior probability contours in the H_{0} vs. Ω_{K} plane for SPT-3G (red), Planck (dark grey), SPT-3G + Planck (blue), and the combination of SPT-3G 2018 , Planck, and BAO data (black lines). The SPT 3G data by itself places constraints competitive with Planck on curvature, in part due to the upturn in the degeneracy ${ }_{3 G} 2018$ betw Ω_{K} and H_{0} as Ω_{K} increases. The combed spi Gistent with the salard model prediction at 1.8σ. Whil this aises the inferred H_{0} value coerered to Planck-aly constraints to $60.6+3.4 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$, remains in tonsion with 1 R 10 , 1 show the 2σ interval in the horizontal grey bands, at 3.5σ

Discussion

- These are our thoughts. What are yours?

