SnowStorm

A Summary of the status of SnowStorm Simulations for a GlobalFit of IceCubes Neutrino Data

Outline

- Reminder: What is SnowStorm?
 Why SnowStorm?
- How do SnowStorm simulations work?
 The SnwoStorm simulation chain
- What simulations/MC sets were produced since the Tokyo workshop?
- How to use the simualtions?
 - Processing SnowStorm MC to final analysis level
 - SnowStorm parameters/frame objects
- Recent developments
 - New SnowStorm simulations?
- Summary & Outlook

Reminder: What is SnowStorm?

- Continuous variation of nuisance parameters
 - Instead of generating multiple simulation sets for some specific choices/combinations of nuisance parameters, generate a SnwoStorm event ensemble
 - In the ensemble, a different combination of the nuisance parameters is chosen based on their allowed phase space
 - More detailed method overview:
 - SnowStorm paper
 - Ben's talk at the Spring Collaboration Meeting 2020 (slides)
- Multiple nuisance parameters/detector systematics can be included within a single SnowStorm set at the same time

SnowStorm for the GlobalFit

- GlobalFit: Combination of multiple analyses/event selections into a single "global" fit of IceCube's diffuse neutrinos
 - Consistent treatment of systematics uncertainties for all contributing analyses/event selections is crucial
- New, "up-to-date" simulations have been a major collaborative work throughout 2020

 SnowStorm MC + "Manuel's" (ESTES) standard MC
- SnowStorm advantages:
 - No need to deal with multiple simulations sets:
 - 1x baseline + X discrete systematic sets
 - > 1x SnowStorm sets which includes all systematics
 - Each (sub) analyses can "pick" the nuisance parameters/detector systematics it needs
 - Marginalize other ones if they are not important

SnowStorm Simulation Chain

- Merge of signal + background particles into a single I3MCTree, <u>before propagation</u>
- "SnowStorm magic" happens during photon propagation:
 - Application of SnowStorm perturbes for varying the ice model parameters
- Software locations:
 - <u>snowstorm</u> software project in icetray/main
 - <u>SnowSuite</u> script collection in simprod-scripts
 - SnowStorm software documentation
- <u>Github repo</u> for iceprod simulation configs

SnowStorm Simulation Chain – Photon Propagation

- Standard photon propagation:
 - Load some ice-model including a choice of e.g. the DOM efficiency and the HoleIce parametrization parameters
 - 2. Run CLSim using this fixed ice-model for all frames
- SnowStorm photon propagation:
 - 1. Define all SnowStorm parameters to use and their sampling distributions in a config file
 - 2. Load a baseline ice-model
 - 3. Dice SnowStorm ice-model parameters and update CLSim's photon propagation kernel
 - 4. Process a bunch of frames with these ice-model settings (~ 100 1000)
 - 5. Dice + load new SnowStorm ice-model parameters
 - 6. Repeat steps 4 + 5

SnowStorm Simulation Chain – Perturbers/Parametrizations

- Currently there are 6 "snowstormable" systematics implemented (table on the right)
- Baseline ice-model Spice3.2.1
- Basline HoleIce model: unified, p0 = p1 = 0
- IceWavePlusModes: icewave ice-model using Fourier decomposition to model depth depended scattering and absorption (<u>SnowStorm paper</u>)

Systematic	Sampling Distribution	Range
IceWavePlusModes	2x 12 Gaussians	
Scattering	uniform	
Absorption	uniform	
AnisotropyScale	uniform	
DOMEfficiency	uniform	
HoleIceForward_Unified	uniform	

Table: Overview of all available systematic perturbations for SnowStorm

SnowStorm Simulations – What happened since the Tokyo Workshop

- Produced several small-scale benchmark sets for testing validating the simulation chain and software
 - This process included several bugfixes like upside down DOMs, 1.35² more sensitive DeepCore DOMs, introduction of new style I3MCTrees, ...
- Merge of the snobo branch into combo
- Production of a first set of large-scale SnowStorm MC production:
 - Perturbation of 5 detector systematics (table on the right)
 - Conservative uniform sampling distributions (+ranges) after a lot of discussions (diffuse + calibration group)
 - Added level3 (muon + cascade) and final level
 (DiffuseNuMu/northern_tracks) processing to the chain
 - Idea: have ready-to-use files from iceprod

Systematic	Sampling Distribution	Range			
Scattering	uniform	[0.9, 1.1]			
Absorption	uniform	[0.9, 1.1]			
AnisotropyScale	uniform	[0.0, 2.0] (= 0-15%)			
DOMEfficiency	uniform	[0.9, 1.1]			
HoleIceForward_Unified	uniform	p0 [-1.0, +1.0] p1 [-0.2, +0.2]			
	Muo FinalLevelD	nL3,)iffuseNuMu			
Detector simulation, L1 + L2 processing	Detector simulation, L1 + L2 processing				
	Csc	dL3			

SnowStorm – Simulation Sets

- "Final" all flavor production sets
- Energy split for better resource utilization during production
- Available files:
 - Generation (incl. polyplopia + muon prop)
 - Level2
 - Level3: Muon + Cascade
 - FinalLevel: DiffuseNuMu (northern_tracks)
- Wiki page with list of all sets and links to the files
- MCPrescale = 1
 - MC equivalent of the MinBias_Filter
 - Driven by C. Haack for #low-level-ml

Dataset ID	Flavour	Energy Range	Spectrum	Notes
21430	NuMu	1e2 – 1e4 GeV	1.5	
21431	NuMu	1e4 – 1e6 GeV	1.5	
21432	NuMu	1e6 – 1e8 GeV	1.0	DOM oversizing 3
21468	NuE	1e2 – 1e4 GeV	1.5	
21469	NuE	1e4 – 1e6 GeV	1.5	
21470	NuE	1e6 – 1e8 GeV	1.0	DOM oversizing 3
21471	NuE	1e2 – 1e4 GeV	1.5	
21472	NuE	1e4 – 1e6 GeV	1.5	
21473	NuE	1e6 – 1e8 GeV	1.0	DOM oversizing 3

SnowStorm Simulation Sets – Example

- SnowStorm MC yields a continuous function of observables/events with respect to the systematic parameters
 - "old-style", discrete systematic sets would have given you only ~handful of points
- DOM efficiency/ice absorption distribution of events on FinalLevelDiffuseNuMu
- One can re-weight the sampling distribution to any other distribution on analysis level

SnowStorm – Reweighting Method

- Re-weighting of the SnowStorm parameters within the MC set to some (arbitrary) distribution on analysis level (e.g. normal dist.)
 - Directly yields a MC prediction for a specific choice of nuisance parameters, i.e. the current hypothesis, in the fit
- Can easily be achieved by adding an additional weight to each MC event:

$$w_{i} = \frac{p_{sys} (sys_{i}, \xi_{i})}{p_{sys}^{sim}(sys_{i})} \cdot \dots$$

$$p_{sys} : \text{reweighting distribution}$$

$$p_{sys}^{sim} : \text{sampling distribution}$$

$$sys_{i} : \text{event's systematic value}$$

$$\xi_{i} : \text{nuisance parameter}$$

SnowStorm Simulation Sets – Example

- Truncated energy for FinalLevelDiffuseNuMu for different DOM efficiencies
- Solid lines: SnowStorm ensemble reweighted to $\pm 10\%$ DOM efficiency
- Dashed lines: prediction of discrete simulation sets for the same ±10% variations
- Black line/ratio baseline: IC86.2017 data
- By reweighting the SnowStorm "event ensemble" one can reproduce the expectation from the "old style" discrete simulation sets
- How to make this plot? How to process SnowStorm simulations?

SnowStorm Simulation Sets – How To use them

- All SnowStorm parameters, ice-model settings, etc. are stored in M and S frames
 - All SnowStorm simulations can be processed/used in the same way as previous/other NuGen simulations
 - Make sure to not drop M+S frames during further processing of the files
- You can use any recent combo/icetray version for processing that can deal with custom frame types
 - combo/V01-00-02 was used for production which is available in /cvmfs/icecube.opensciencegrid.org/...

- All SnowStorm parameters, ice-model settings, etc. are stored in (new) M and S frames
 - All SnowStorm simulations can be processed/used in the same way as previous/other NuGen simulations
 - Make sure to not drop M+S frames during further processing of the files
- You can use any recent combo/icetray version for processing that can deal with custom frame types
 - combo/V01-00-02 was used for production which is available in /cvmfs/icecube.opensciencegrid.org/...

- S-Frame:
 - Only one per file
 - Simulation frame for bookkeeping:
 - initialized SnowStorm parametrizations (parameters)
 - SnowStorm sampling distributions

- All SnowStorm parameters, ice-model settings, etc. are stored in (new) M and S frames
 - All SnowStorm simulations can be processed/used in the same way as previous/other NuGen simulations
 - Make sure to not drop M+S frames during further processing of the files
- You can use any recent combo/icetray version for processing that can deal with custom frame types
 - combo/V01-00-02 was used for production which is available in /cvmfs/icecube.opensciencegrid.org/...

- S-Frame:
 - Only one per file
 - Simulation frame for bookkeeping:
 - initialized SnowStorm parametrizations (parameters)
 - SnowStorm sampling distributions
- M-Frame:
 - One per every "bunch" of events
 - Sampled SnowStorm parameters
 - It also tells you how many events/frames the icemodel was applied to during simulation (before triggering)

SnowStorm Simulation Sets – How To use them

- All SnowStorm parameters, ice-model settings, etc. are stored in (new) M and S frames
 - All SnowStorm simulations can be processed/used in the same way as previous/other NuGen simulations
 - Make sure to not drop M+S frames during further processing of the files
- You can use any recent combo/icetray version for processing that can deal with custom frame types
 - combo/V01-00-02 was used for production which is available in /cvmfs/icecube.opensciencegrid.org/...

- S-Frame:
 - Only one per file
 - Simulation frame for bookkeeping:
 - initialized SnowStorm parametrizations (parameters)
 - SnowStorm sampling distributions
- M-Frame:
 - One per every "bunch" of events
 - Sampled SnowStorm parameters
 - It also tells you how many events/frames the icemodel was applied to during simulation (before triggering)
- How to extract parameters from the S and Mframe?

S(imulation)-Frame

- SnowstormParametrizations
 - List of used SnowStorm systematics/parametrizations
- SnowstormParameterRanges
 - List of tuples mapping [start : end] elements of the SnowStormParameters vector to the systematics
- SnowstormProposalDistribution
 - Vector containing the original sampling distributions in serialized form

M(odel)-Frame

- SnowstormEventsPerModel
 - Number of events this ice model was originally being applied to (on generation level, i.e. before triggering)
- SnowstormParameters
 - Vector of sampled ice-model parameters used for all following events until the next M frame occurs

- Indition)-Frame
 SnowstormParameter/Fait/for
 SnowstormParameter/Fait/for
 SnowstormParameter/Fait/for
 SnowstormParameter/Fait/for
 SnowstormParameter/Fait/for
 SnowstormParameters vector to the specificity
 SnowstormParameters
 SnowstormParameters

- A <u>"snowstorm parameter wrapper</u>" exists taking care of all the different frame objects
- ✓ It creates a "SnowstormParameterDict" with a simple mapping of parameter name → value in the M-Frame
 - Like the I3MCWeightDict from NuGen
 - Single frame object with all important information for the user
 - Works with I3HDFWriter
- This was not applied for Level2 during initial production but on later analysis level only...
- Will add this for the second round of SnowStorm MC production

M(odel)-Frame

- SnowstormEventsPerModel
 - Number of events this ice model was originally being applied to (on generation level, i.e. before triggering)
- SnowstormParameterDict

<pre>SnowstormParameterDict [I3Map<cxx11::string, double="">]:</cxx11::string,></pre>
[Absorption => 0.965954,
AnisotropyScale => 1.41439,
DOMEfficiency => 1.07651,
HoleIceForward_Unified_p0 => 0.844656,
HoleIceForward_Unified_p1 => 0.176947,
Scattering => 1.08156]

SnowStorm – Preliminary Summary

- ✓ Setup python 3 simulation chain for SnowStorm
- Production of several benchmark sets
 Test, cross-checks, verification, etc.
- Merge of snowstorm software project + scripts into combo (icetray) for V01-00-00 release
- Production of a first batch of larger all flavor SnowStorm simulation sets
- Start investigating different concepts of using/dealing with SnowStorm MC in an analysis
- Slowly growing userbase of people working with those new SnowStorm sets

- Include the SnowStorm parameter wrapper in the simulation chain
 - Ideally the dictionary should be created during application of the SnowStorm perturber
 - Hands on session?

SnowStorm – Recent Developments

- Setup python 3 simulation chain for SnowStorm
- Production of several benchmark sets
 - ✓ Test, cross-checks, verification, etc.
- Merge of snowstorm software project + scripts into combo (icetray) for V01-00-00 release
- Production of a first batch of larger all flavor SnowStorm simulation sets
- Start investigating different concepts of using/dealing with SnowStorm MC in an analysis
- Slowly growing userbase of people working with those new SnowStorm sets

- Include the SnowStorm parameter wrapper in the simulation chain
 - Ideally the dictionary should be created during application of the SnowStorm perturber
 - Hands on session?
- During more detailed comparisons of SnowStorm and latest non-SnowStorm standard simulations using the full statistic available, some issues/differences showed up
- In December/January two bugs were discoverd almost in parallel
 - GCDFileBug (notlimited to SnowStorm MC)
 - Polyplopia bug (affecting only SnowStorm simulations)

SnowStorm – GCD File Bug

- The GCD file used in all 2020 simulations had some (all?) NaN values for the SPE peak position for multiple DOMs
- This bug affects almost all simulation sets produced in 2020, i.e. it is not limited to SnowStorm
- A new, fixed GCD file was generated by Juan Carlos
- Initiated production of new SnowStorm sets with this bugfix
 - Only NuMu fully completed, NuE and NuTau at ~50%
- Investigated the impact on FinalLevelDiffuseNuMu
 - Effect can be fully covered by a ca. -1% shift in DOM efficiency

SnowStorm – Polyplopia Bug

- However, there was still a difference between SnowStorm/standard simulations
- Found an issue with the combination/merge of signal and background simulation with Polyplopia:
 - For SnowStorm, less CR coincident events were merged (simulation) than expected from the plain CORSIKA rate
- Issue due to a misconfiguration of the polyplopia segment:
 - Polyplopia assumed a CORSIKA primary simulation and merged only N-1 coincidences...
- Fix applied/pushed to SnowSuite scripts
- Production of new benchmark sets

SnowStorm – Latest Benchmark sets

✓ Found and fixed two bugs after initial production

- Red: "latest" SnowStorm (GCD + Polyplopia bugfix)
- Purple: "latest" standard sim (GCD bugfix)
- Still looking suspicious below ~1e4 GeV ?
- Further investigate this? Sets are available: <u>Wiki page</u>
- Produce new large scale SnowStorm simulations with our current "best knowledge"?
 Include additional improvements/updates?
 - → next talk/discussion item

Summary and Outlook

- Merge of snowstorm software project + scripts into combo (icetray)
 - ✓ Included for V01-00-00 and later releases
- Production of a first batch of larger all flavor SnowStorm simulation sets
- Start investigating different concepts of using/dealing with SnowStorm MC in an analysis
- Slowly growing userbase of people working with those new SnowStorm sets
- Tool/framework development for using SnowStorm MC

- Found and fixed GCD file + Polyplopia bug
 Bugfixes available only in smaller scale benchmark sets
- Second round of SnowStorm MC production?
 - Include GCD + Polyplopia bugfix
 - Wavedeform: Recently it was found that different versions producing different pulses are used for data and MC...
 - Update baseline ice model/adjust sampling distributions?
 - SnowStorm is based on Spice3.2.1, update to SpiceBFRv1 (v2 is not available in CLSim yet)
 - Next talk/discussion

Appendix

SnowStorm Aplication – Gradient Method

- (1) Use the Snowstorm MC set to extract the gradient in analysis space (chapter 2 in the <u>paper</u>)
- Assumptions:
 - 1. "effects of systematic uncertainties on analysis variables are sufficiently small that they can be treated perturbatively"
 - 2. "statistical uncertainty on Monte Carlo event counts is very small compared to that on the data"
- "If the effects of the nuisance $\vec{\eta}$ parameters are perturbative, this implies that the distribution function at any $\vec{\eta}$ can be written as a Taylor expansion around the central distribution:"

$$\psi_{\vec{\rho},\vec{\eta}} = \Psi_{\vec{\rho}} + \vec{\eta}.\vec{\nabla}_{\eta} \left[\psi_{\vec{\rho},\vec{\eta}}\right]_{\vec{\eta}=\vec{0}} + \mathcal{O}(\eta^2),$$

SnowStorm MC – Towards the Use in an Analysis – Gradient Method

If "the prediction of the SnowStorm ensemble and the central model are identical O(η²) effects" (and "comparison show[s] they are equivalent within the available statistical uncertainty"), this expression reduces to

$$\psi_{\vec{\rho},\vec{\eta}} = \Psi_{\vec{\rho}} + \vec{\eta}.\vec{G}_{\vec{\rho}}, \qquad \vec{G}_{\vec{\rho}} \equiv \vec{\nabla}_{\eta} \left[\psi_{\vec{\rho},\vec{\eta}}\right]_{\vec{\eta}=\vec{0}}.$$

- The "magic" part is to extract the gradient from the SnowStorm Ensemble:
 - Cutting the ensemble in half
 - By weighting: "consider constructing a prediction where each event in the SnowStorm ensemble is weighted by a factor of η_i "

SnowStorm Application – Reweighting Method

- (2) Re-weighting of the SnowStorm parameters within the MC set to some (arbitrary) distribution on analysis level (e.g. normal dist.)
 - Directly yields a MC prediction for a specific choice of nuisance parameters, i.e. the current hypothesis, in the fit
- Can easily be achieved by adding an additional weight to each MC event:

$$w_{i} = \frac{p_{sys} (sys_{i}, \xi_{i})}{p_{sys}^{sim} (sys_{i})} \cdot \dots$$

$$p_{sys} : \text{reweighting distribution}$$

$$p_{sys}^{sim} : \text{sampling distribution}$$

$$sys_{i} : \text{event's systematic value}$$

$$\xi_{i} : \text{nuisance parameter}$$

- (2) Re-weighting of the SnowStorm parameters within the MC set to some (arbitrary) distribution on analysis level (e.g. normal dist.)
 - Directly yields a MC prediction for a specific choice of nuisance parameters, i.e. the current hypothesis, in the fit
- Can easily be achieved by adding an additional weight to each MC event:

$$w_{i} = \frac{p_{sys} (sys_{i}, \xi_{i})}{p_{sys}^{sim} (sys_{i})} \cdot \dots$$

$$p_{sys} : \text{reweighting distribution}$$

$$p_{sys}^{sim} : \text{sampling distribution}$$

$$sys_{i} : \text{event's systematic value}$$

$$\xi_{i} : \text{nuisance parameter}$$

- Choice of the re-weighting distribution?
- > For a normal distribution: One can show that in the limit of small widths the prediction is equivalent to a delta-function centered at $x_0 = \mu$

(sketch: width increased for better visualization)

Why SnowStorm for the GlobalFit?

- GlobalFit: Combination of multiple analyses/event selections into a single "global" fit of IceCube's diffuse neutrinos
- For this, a consistent treatment of systematics uncertainties for all contributing analyses/event selections is crucial
- Advantages of SnowStorm:
 - No need to deal with multiple simulations sets:
 - 1x baseline + X discrete systematic sets
 - > 1x SnowStorm sets which includes all systematics
 - Each (sub) analyses can "pick" the nuisance parameters/detector systematics it needs
 Marginalize other ones if they are not important

SnowStorm – Polyplopia Bug

 However, there was still a difference between SnowStorm/standard simulations

