The near and distant future of theoretical flux systematics

Anatoli Fedynitch Diffuse Workshop May 11th, 2021

Overview

- Near future:
 - DDM: new hadronic interaction model for atmospheric fluxes
 - The origin of differences between MCEq and Honda
 - Some minor updates on SIBYLL and DPMJET
 - Balloon, surface and shallow-underground muon data for constrains
 - And deep-underground muon fluxes, as well
- More distant future:
 - Data-driven uncertainty estimation of fluxes and uncertainties (GlobalFit ☺)
 - 2D MCEq, geomagnetic cutoff, and more 3D stuff

DDM: Data-Driven hadronic interaction Model

Data from accelerators

- The lines show **taken** data (not necessarily analyzed) assuming pion secondaries
- Interactions within contours responsible for 90% of the event rate
- IceCube and DeepCore counts from public effective areas
- Atmv in IceCube probes hadronic interactions at $E < E_{LHC.}$
- DeepCore coincides mostly with Super-/Hyper-K from Barr et al.
- Muons: vertical, surface, flux integrated above threshold. Shape of phase-space contours very similar in log-log.

NA61/SHINE, a fixed target experiment

Pictures provided by CERN (home.cern)

But shouldn't be much more data around?

Target mass dependence of Z-factors

 \rightarrow Extrapolation from pp or pBe model dependent

- Extrapolating from excellent NA49 pp data is model dependent, so we can not use charged kaons at 158 GeV. We only have kaons at 31 GeV in pC.
- Carbon → air only a 0.1-2% impact
- NA59/SPY has good data from protons on beryllium thin target, needs extrapolation.
- Also target thickness has impact. NA61 data only from carbon thin target usable.
- Data on particle ratios would be useful too, to constrain off-diagonal covariance.
- A collaboration with NA61 would be useful. Partially completed energy ramp study at 31, 60, 80, 120, 158 GeV should nail it down. But NA61/SHINE is traditionally lacking manpower. One energy = 1 PhD student, maybe all required particles.
- There could be more data that we didn't find. Requirements: angular acceptance, systematic uncertainties, good stats.

Data published by NA61 in rapidity *y* is problematic

$$x_{Lab} \stackrel{(A.29)}{=} \frac{\gamma \sqrt{m_c^2 + \frac{1}{4} x_F^2 E_{c.m.}^2 + p_{c,T}^{*2}} + \frac{1}{2} \gamma \beta x_F^2 E_{c.m.}}{E_a}}{\frac{E_a}{\frac{\gamma \sqrt{m_c^2 + \frac{\tanh^2(y) \left(m_c^2 + p_{c,T}^{*2}\right)}{1 - \tanh^2(y)} + p_{c,T}^{*2}} + 2\gamma \beta \frac{\tanh^2(y) \left(m_c^2 + p_{c,T}^{*2}\right)}{E_{c.m.}\left(1 - \tanh^2(y)\right)}}}{E_a}}$$

No coverage B NA61 has been upgraded and future analyses will behave better. 80 and 120 GeV not yet public, though.

But shouldn't be much more data around?

Target mass dependence of Z-factors

 \rightarrow Extrapolation from pp or pBe model dependent

- Extrapolating from excellent NA49 pp data is model dependent, so we can not use charged kaons at 158 GeV. We only have kaons at 31 GeV in pC.
- Carbon → air only a 0.1-2% impact
- NA59/SPY has good data from protons on beryllium thin target, needs extrapolation.
- Also target thickness has impact. NA61 data only from carbon thin target usable.
- Data on particle ratios would be useful too, to constrain off-diagonal covariance.
- A collaboration with NA61 would be useful. Partially completed energy ramp study at 31, 60, 80, 120, 158 GeV should nail it down. But NA61/SHINE is traditionally lacking manpower. One energy = 1 PhD student, maybe all required particles.
- There could be more data that we didn't find. Requirements: angular acceptance, systematic uncertainties, good stats.

Data published by NA61 in rapidity *y* is problematic

$$x_{Lab} \stackrel{(A.29)}{=} \frac{\gamma \sqrt{m_c^2 + \frac{1}{4} x_F^2 E_{c.m.}^2 + p_{c,T}^{*2}} + \frac{1}{2} \gamma \beta x_F^2 E_{c.m.}}{E_a}}{\frac{E_a}{\frac{\gamma \sqrt{m_c^2 + \frac{\tanh^2(y) \left(m_c^2 + p_{c,T}^{*2}\right)}{1 - \tanh^2(y)} + p_{c,T}^{*2}} + 2\gamma \beta \frac{\tanh^2(y) \left(m_c^2 + p_{c,T}^{*2}\right)}{E_c.m. \left(1 - \tanh^2(y)\right)}}}{E_a}}$$

No coverage B NA61 has been upgraded and future analyses will behave better. 80 and 120 GeV not yet public, though.

But shouldn't be much more data around?

 \rightarrow Extrapolation from pp or pBe model dependent

- Extrapolating from excellent NA49 pp data is model dependent, so we can not use charged kaons at 158 GeV. We only have kaons at 31 GeV in pC.
- Carbon → air only a 0.1-2% impact
- NA59/SPY has good data from protons on beryllium thin target, needs extrapolation.
- Also target thickness has impact. NA61 data only from carbon thin target usable.
- Data on particle ratios would be useful too, to constrain off-diagonal covariance.
- A collaboration with NA61 would be useful. Partially completed energy ramp study at 31, 60, 80, 120, 158 GeV should nail it down. But NA61/SHINE is traditionally lacking manpower. One energy = 1 PhD student, maybe all required particles.
- There could be more data that we didn't find. Requirements: angular acceptance, systematic uncertainties, good stats.

Data published by NA61 in rapidity *y* is problematic

$$x_{Lab} \stackrel{(A.29)}{=} \frac{\gamma \sqrt{m_c^2 + \frac{1}{4} x_F^2 E_{c.m.}^2 + p_{c,T}^{*2}} + \frac{1}{2} \gamma \beta x_F^2 E_{c.m.}}{E_a}$$

$$\stackrel{(A.36)}{=} \frac{\gamma \sqrt{m_c^2 + \frac{\tanh^2(y) \left(m_c^2 + p_{c,T}^{*2}\right)}{1 - \tanh^2(y)} + p_{c,T}^{*2}} + 2\gamma \beta \frac{\tanh^2(y) \left(m_c^2 + p_{c,T}^{*2}\right)}{E_c.m. \left(1 - \tanh^2(y)\right)}}{E_a}$$

No coverage B NA61 has been upgraded and future analyses will behave better. 80 and 120 GeV not yet public, though.

Resulting fits for pC and pi-C

- This is not the final plot!
- Dashed curves are from DPMJET-III-19.1
- Uncertainties blow up in absence large x_{L} data
- The forward protons are compared with bin-averages from MCEq. This effect is not that dramatic in reality and has been corrected
- Fits for pion carbon more difficult since acceptance is smaller
- Using a phenomenological fit function for dn/dx_L reduces drastically the uncertainty, but breaks the concept
- Apart from that we didn't find any generic fit function that would fit all distributions

Resulting fits for pC and pi-C

- This is not the final plot!
- Dashed curves are from DPMJET-III-19.1
- Uncertainties blow up in absence large x_{L} data
- The forward protons are compared with bin-averages from MCEq. This effect is not that dramatic in reality and has been corrected
- Fits for pion carbon more difficult since acceptance is smaller
- Using a phenomenological fit function for dn/dx_L reduces drastically the uncertainty, but breaks the concept
- Apart from that we didn't find any generic fit function that would fit all distributions

Impact of individual channels on uncertainty

- Large effect from nucleons (pink and gray) cancels out in ratios
- No prompt considered
- Dashed curves are + and charged mesons
- Mostly as expected, except the role of nucleons
- I'm not yet fully convinced of the nucleons

DDM+ GSF vs data: muon fluxes

- Hatched line is SIBYLL + Barr parameters (Bartol-Parameters maybe?)
- Shaded bands DDM uncertainties, propagated from splines with MCEq
- DDM uncertainty larger than Bartol
- Data without systematics. L3c and Bess allow for 10-15% normalization shift
- BESS perfectly described without additional corrections or syst. pulls
- DEIS and Mutron are both from the 1980s, with good papers.
- Both indicate a softening of the spectrum

DDM+ GSF vs data: muon charge ratio

- Reasonable description
- BESS data @ 13 deg (costh=0.95), well described between 5-50 GeV → Projectile E<300 GeV
- At E > 100 GeV description worse. Indication of energy dependent effect?
- Same for higher energy near-horizontal
- At lower energies maybe low-E model effect or geomagnetic cutoff
- Data is within model uncertainties

DDM+ GSF vs data: neutrino fluxes

Electron neutrinos+antineutrinos

- DDM much close to Honda, identical ٠ at low energies
- Angular distribution at E<3 GeV ٠ should not be correct (will mention it later)
- Numu model line not corrected for ٠ disappearance
- Different spectral index than SIBYLL + • **Bartol**

DDM+ GSF vs data: neutrino ratios

- Ratio uncertainties much smaller in DDM than Bartol
- Flavor ratio uncertainties not (yet) shown, requires to a re-run of entire error propagation chain
- There is CR flux uncertainty and energy extrapolation uncertainty, which will impact higher energies.

The meat: Z-factors

- Honda assumes scaling
- All models don't obey scaling
- DPMJET looks like the best model, but it's not in fluxes → crucial energy range above NA49/61
- Phase-space plot on slide 3 shows this
- Many reasons for scaling violation in models, and likely different reasons in each models
- Some speculation: valence-sea configurations increase too rapidly for soft strings, remnant excitation is not a good solution for baryon spectra, less diffraction than we think, etc..

What's next and how to gain certainty?

- At shallower depths, DDM is excellent
- At large depths, SIBYLL provides a god description
- Truth will be in-between
- Stay tuned
- Also, G. Barr mentioned that he wants to trigger MINOS to publish the true underground charge ratio, avoiding many of the systematics
- There is more underground data, but analyses without specific goals

How to learn from muon data?

Project with Juan Pablo Yanez, update soon (ICRC).

Final words

- Some new data-driven techniques have been developed
- The DDM model behaves in general well and produces conclusive results
- An interesting issue is the violation of Feynman scaling that seems indicated by muon data
- However, this can also be related to cosmic ray spectrum. A joint fit with GSF, may constrain flux anyways.
- Data available with errors smaller than current uncertainties!
- At low energies, a 3D calculation is on the way. Tetiana Kozynets (NBI) has reported on the progress. More at ICRC.
- There are many things to do, help is welcome.

Other minor issues

- Difference between SIBYLL 2.3c and 2.3d: almost none for fluxes, just pi0
- DPMJET-III in MCEq: KOL and KOS buggy matrices
- Fix implemented in MCEq > 1.3.4: config.adv_set['fix_dpmjet_neutral_kaons'] = True
- Due to synchronization with FLUKA 4 CERN, DPMJET-III params will slightly change, minor impact, no breakthroughs.