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» Building radio detector in the Antarctic ice, a large volume of
b radio transparent medium with a long radio-wave attenuation
= length of ~1 km, would be cost-effective and the best option
Sensitive to to observe UHE neutrinos.

orizontal > Five independent ARA stations are constructed 200 m

Polarization below the ice surface with 2 km spacing.

5 > In each station, 16 RF antennas + 4 calibration pulsers
Sensitive to equipped with 6 downhole strings.

Vertical » Vertically polarized (Vpol, Z-axis) and horizontally

polarized (Hpol, XY-plane) antennas are deployed to measure
the polarization of the electric field.

Polarization

» Signal chain corresponds to LNA, RFoF, and Amplifier
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Strategy for developing antenna model

> The goal is to have an accurate antenna model for Gen2-Radio
simulation.

> Developing an antenna model based on in-situ calibration is the
optimal approach.

» It can reflect the real environment, but difficult to scan the full

Antenna simulation

angular gain pattern when detector is placed in the ice. (In—air to In—ice transition)

» Constructing in-air to in-ice transition strategy for covering the gap.

1. Measurement in anechoic chamber (in-air) -> easily
perform detail scan.

2. Antenna simulation (XFDTD) -> bridge for in-air to in-ice
transition (It was challenging).

3. Verifying results with In-situ calibration (in-ice). modeling

> Eventually, an empirical antenna model was developed
based on in-situ data.

Antenna gain in—air
(Anechoic chamber measurement)

comparison
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Verification

Antenna gain in—ice
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Anechoic chamber measurement

COnfiguration ’ > The goal is measuring ARA antenna gain
s in air and verifying the simulation results.

» The measurement was performed in a
large anechoic chamber at Kyoto (18 m x
17 m x 7.3 m) which is big enough to
confirm the far-field effect.

17m

» We measured,

1. Vpol and Hpol antenna

Clockwise
rotation

| 2. Original and slim antenna(later
40m cable — - | Entrarice slide)

3. 10 deg interval (for original

Schematics of calculation Nemvork or Oscillosco antenna)
S, . CI analyzer Pe
4. Network analyzer : F-domain
S, 8 8 . .
e N 5. Oscilloscope : T-domain
Gieone 8 > Bicone antenna was used for transmitting
:Egaﬂiema = the signal and later it was removed from
G*CI gain calculation.
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Anechoic chamber measurement

Vpol @ 0 deg.

Realized Gain [dBi]

simulation

Kyoto freq-domain measurement
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» Vpol: The gain frequency tendency is roughly the same as

simulation. AG(measurement — simulation): -0.79 = 1.85 dB

» Hpol: Unknown ferrite property caused mismatch with

simulation (frequency shift). The simulation cannot describe the

data well. AG: -0.48 + 3.65 dB




In-situ calibration

Pulser lift measurement
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» The crucial data for developing/verifying the
antenna model. But it has limitations for
measurement.

> Pulser lifting measurement (by Ming-Yuan Lu,
Madison): lifting calibration string that contains
transmitter antennas and pulser module.

> [t was performed for measuring the zenith-
dependent antenna pattern in ice.

» By gradually lifting pulser up to 50 m, ~60
degree amount of zenith angle data was
obtained.

> Antenna gain and signal chain gain were
calculated based on the Friis equation
method (by Thomas Meures, Madison) by
reflecting the real ice-hole/temperature
environments.



In-situ calibration
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Transition by simulation (XFDTD)

Geometry - Editing Shed

» XFDTD simulation was used for in-air to
In-ice transition.

» The in-ice simulation was made by placing
an antenna inside a cube of ice including a
simulated dry hole.

» The transition was challenging!

1. Vpol: It agrees better in the air but
difficult to reproduce in ice
measurements.

2. Hpol: Lack of ferrite information

detectors in air mmmm)  detectors in ice with cause a general mismatch in both air

e Ice/air refraction cormrection (snell’s transformation) s
. R and ice results.

Realized Gain

v Air

- ke e St Tastomatin O, ' » Couldn't establish transition by XFDTD
simulation.

—
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> Need to make an empirical antenna

Both hole and snell's method were failed model based on in-situ data.
to reproduce the in—situ data
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Empirical antenna model

Realized Gain VPol 1.0 Deg

Realized Gain HPol 0.5 Deg
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Data (Average) 1.010 +/- 0.008

1.006 +/- 0.008

Model (rel Average /

Systematics / reduced x?)

-16% /38% /1.8

-13% /1 32% / 3.9

XFDTD (rel Average /

-30% /43% /4.9

-57% 164% /17

» Need to develop a model that describes both
polarization and estimates different angles
in ice.

> In-situ calibration data was used.

> pros: reflects the real ice-hole/
temperature environments.

> cons: only limited angular coverage.

» The model-based from Legendre
polynomials which should describe any
angular patterns.

> A(f)*Cos ™ 2(B(f)0)
+C(f)*Sin "~ 2(D(f) 6)

> Fit n-order polynomials to parameters to
describe their behavior with frequency.

» Error is calculated by taking the difference
between model and data error values
(statistical uncertainty + 20% systematics).

» Lesson learned:

1. Thorough in-situ calibration is crucial for detector
modeling/development.

2. The future detector should be able to perform full
in-situ calibration including wide angular gain scan
and signal chain gain. 10

Systematics / reduce x?)
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Analysis based on empirical antenna model (on progress)

Simulated Neutrino signal
based on empirical antenna model
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Slim antenna study

» The slim antenna was studied for next-
generation detector design.

O Produced slim antennas &=

P =g R | .
o " — L s o
. 'I.‘ N = i : ‘.

» The diameter of the antenna aimed to below
10 am for deploying it by RAM drill.

» Very efficient (25 min. / hole. The current
hot water drill 10 hours / hole of 200 m)
~10x faster.

» The cost will be reduced by the speed of the
drill (10 times less).

» The feed part is also optimized to reduce the
impedance mismatch.

2018/10/2

Original antenna Slim antenna

RAM drill

Plate feed Cross feed
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Anechoic chamber measurement

VPol antenna gain HPol antenna gain Odeg
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» Measured slim Vpol antenna gain is about ~1
dB worse compared to the original size.

7.6cm

tube outer radiu

(tube outer ragiilis (tube outer radius)

» Measured slim Hpol(76 mm asym.) gain is
worse than the original by ~3 dB.

» Vpol slim antenna is a promising, slightly
larger size for Hpol (89 mm) should be tried.
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Measurement at the South pole

VPol antenna gain HPol antenna gain
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» Vpol: Relatively large fluctuations for the in-ice measurements. In-ice peak gain is not too different from
in-air gain. Vpol slim antenna seems to be working properly.

» Hpol: Slim antenna also shows simulation/data mismatch for air (due to unknown ferrite
characteristics). Larger gain in ice.

» Need more study for understanding in-ice behavior of the slim antenna.
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Summary / Discussion

» Constructing an in-ice-with-hole detector model based on calibrations in anechoic
chambers is challenging.
» In-air measurement/simulation is not good enough for modeling in-situ behavior
» In-situ calibration is crucial for detector modeling/development.
» Measuring more wider angular gain and signal chain gain in ice with good in-situ
calibration plan would be crucial for future detector.

» The slim antenna is showing ~ 1dB (Vpol) and ~3dB (Hpol) worse than the original

antenna but the quick deployment by RAM drill would reduce the cost.




