DETERMINING DEEP ANTENNA POSITIONS AND UNCERTAINTIES WITH ARA STATION 5

Kaeli Hughes The University of Chicago IceCube Calibration Workshop April 8, 2021

ARA STATION 5

- Two separate (but connected)
 experiments located in the same spot
- Phased Array: one string with 7 VPol antennas and 2 HPol antennas. It uses a phased array trigger on VPol antennas only.
- A5 Station: traditional ARA station with 4 strings. Each string has two VPol and two HPol antennas ~30 m apart. It uses a power threshold trigger
- ► One local calibration pulser
- Goal: determine antenna locations to within 10 cm

Description

Index of refraction changes as a function of depth; big impact on distant calibration sources

Relative delays due to different cable lengths + differences in bulk cable

Dependent on the quality of the digitizers, similarity of antenna impedances, and available in-situ measurements

Ideally, want sources at a variety of angles, as well as both local and distant. For ARA5 we have two sources: 1 local cal pulser + 1 SPIceCore drop

3

FITTING PROCESS FOR CALIBRATING ARA 5

- 1. Using only phased array antennas, solve simultaneously for best ice model and relative phased array cable delays
- **2.**Using best ice model, calculate expected and measured time delays from:
 - Local calibration pulser
 - SPIceCore pulser
- ARA channel cable delays

3.Input those time delays in a Minuit optimizer to find best antenna locations and

ASSUMPTIONS MADE FOR ARA STATION 5

- > We know the depth of the phased array exactly.
 - accurate.
- > We know the depth of the SPIceCore pulser as a function of time.
 - This was measured carefully during the SPIceCore run
 - > Any uncertainties here are absorbed by the fit for ice model
- > The Phased Array and the SPIceCore holes are approximately parallel.

> This is a reasonable assumption because the phased array antennas are deployed compactly, within ~ 10 m of each other, so likely the relative depths are very

USING SPICECORE TO FIND BEST ICE MODEL AND CABLE DELAYS

UNL (2016) Model Predictions

- Because we didn't have individual cable delay measurements, we had to use SPIceCore data to solve for ice model and cable delays simultaneously
- As the SPIceCore pulser dropped, the time delays between channels changes
- Plotted here are time delays as a function of depth- no cable delays included. Data is on left, model prediction is on the right
- Difference between model (right) and data (left) is one way to find the cable delay
 - For example, difference between red data and model is 5.1 ns. Using nominal speed = 0.202 m/ns we can get cable length of 1.03 m (compared to 1.0 m predicted)

COMPARING MULTIPLE MODELS

- \succ While a shift in the x axis can account for the cable delay, the shape of the curve determines the ice model
- ► Here, I've forced all models to overlap data at -1400 m to easily compare
- ► Only UNL (2016) gets close to describing data accurately
- Solution: modify UNL (2016) to get new best ice model

7

AVERAGE LOCAL CALIBRATION PULSER- A5 ANTENNAS

- Averages for 7/8 VPol antennas for a local calibration pulser
- Differences between channels caused by two main things:
 - Non-identical impedances and non-identical impulse responses
 - Angular dependence of both transmitting + receiving antenna
- Average calculated time delay error: 82 ps

PHASED ARRAY WAVEFORMS

► What changed?

- ► Better digitizers
- Antenna impedances and impulse responses extremely similar
- Compact array means antenna angular response less pronounced

USING MINUIT TO FIND POSITIONS

► Two main steps:

1.Build a library of time delays, using all available calibration sources

2. Minimize the above equation in two steps: once assuming holes are straight/parallel, then allowing holes to tilt

Errors on fit calculated using built-in Hessian error functionality- all below 5 cm

RESULTING RESOLUTION: POINTING BACK TO THE LOCAL CALIBRATION PULSER

- ► Very successful at pointing events back to local calibration pulser
- ► But, this is expected, since we used this data for calibrating!
- ► Ideally, would have a third, separate calibration source to test the geometry

.

SUMMARY OF PRECISION

	Estimated error	
lce model	+/- 0.05 ns; additional systematic offset	
A5 calibration pulse time delays	+/- 0.082 ns	1
Phased array calibration pulse time delays	+/- 0.03 ns	
Minuit fit	<5 cm	С

How to improve

More precise measurements of cable lengths and cable speeds at cold temperatures prior to deployment

More identical antenna impedances; better in situ measurements; improved digitizers

Orthogonal calibration pulsers would likely make it easier to minimize

FUTURE PLANS

- RNO-G: first stations to be deployed this summer
- ► Upgrades:
 - Multiple local calibration pulsers
 - ► All fibers and cables measured
 - ► New VPol and HPol antenna designs
 - Better digitizers
- Other calibration sources also planned (DISC borehole, snowmobile surface pulsing, maybe others)

BACKUP

UNKNOWN AND KNOWN PARAMETERS

Quantity	Unl
(x, y, z) of each A5 VPol antenna	
(x, y, z) of local Calibration Pulser	
(x, y) of SPIceCore hole	
(x, y) of Phased Array	
Cable delays for each A5 VPol antenna	
Cable delays for each Phased Array VPol antenna	
Ice Model	
Time Delays from A5 baselines + local calibration pulser	
Time Delays from A5 baselines + SPIceCore	
(z) of Phased Array	
z(t) of SPIceCore pulser	
Total	
The relationship between time delays and position	is n

••••••••••••••••••••••••••••••••••••••	
known Parameters	Known Parameters
24	
3	
2	
2	
8	
7	
3	
	28
	28
	7
	1
49	64

not linear- so very hard to know when you have "enough" known parameters

HOW GOOD DOES THE POSITION FIT NEED TO BE?

Two-Antenna Sum vs. Wavelength Mismatch

To use full waveforms, need to have errors below 10 cm

n=1.7 Two-Antenna Sum vs. Displacement

16

3

POTENTIAL ICE MODELS

n(z) = A

Model Name	A	B	C	
AraSim	1.78	1.35	0.0132	
Gorham	1.788	1.325	0.0140	
AraRoot	1.78	1.353	0.0160	
UNL 2016	1.78	1.326	0.0182	
UNL 2016, modified	1.78	1.326	0.0202 I use th	nis ma
RICE (2004)	1.78	1.36	0.0132	
SPIceCore 1	1.774	1.293	0.0154	
SPIceCore 2	1.774	1.249	0.0163	
Uzair	1.78	1.17054	0.0171774	

$$-(A-B)e^{Cz}$$

DOES DEEP PULSER RECONSTRUCT WITH THIS ICE MODEL? YES

Chi2

	20.0	 Ice model: UNL (2016) modified
-	15.0	 Using only phased array, deep pulser reconstructs to
-	12.5	approximately correct location
-	10.0	
-	7.5	
-	5.0	
	2.5	
	0.0	$D_0 F - 21$

.

UNL (2016) MODIFIED: HOW THIS LOOKS ACROSS CHANNELS

- Modified UNL fits all pairs of channels
- Six pairs of channels shown here

COULD THIS BE A DISTANCE EFFECT? NOT PRIMARILY

Plotting the model for two different SPIceCore distances does not change answer much

.

USING SPICECORE FOR CALIBRATION - A5 CHANNELS

String 1 VPOL Antennas

- For a single antenna pair, plot all time delays as a function of depth of SPIceCore
- Interpolate to find 20 points at specific depths
- Repeat for all baselines
- Note: cable delays here have not been added

MAP OF ARA STATION 5

