

Characterisation and pre-calibration of the scintillation detectors of the IceTop surface enhancement

The IceTop surface enhancement

Plan to deploy 32 stations - with 8 detectors and 3 radio antennas each

- within the IceTop footprint

The IceTop surface enhancement – Prototype station

2017/18-2020

2020:

- New alignment, new scintillator readout, 8 instead of 7 detectors
- New radio antennas
- New Fieldhub (with new TAXI DAQ)

thomas.huber@kit.edu

Towards IceCube Gen2 surface in respect of the IceTop surface enhancement

Possible IceCube Gen2 Observatory

Overview scintillation detectors

Production of the scintillators

Splitting the production into two parts:

Frame / "housing"

Tube film (black)

Scintillation detector / "inlay"

"Finished" detector 7 **thomas.huber@kit.edu**

(Half) tube film:

- Electrostatic discharge film up to 10^3 Ohm (ESD)
- Material: Polyethylen LD
- 0,150mm thick

Air evacuated

Covid-19 "impact"

Веfоге

Now

"Placeholder" for Andreas W. & Bernd Günter & Heiko

- Fixed "work couples"
- Laboratory use and office occupancy split by day
- Almost all meetings virtual
- Discussions during "walks" or/and limited times in offices

Some examples of the functional tests for the scintillators

thomas.huber@kit.edu

Example functional tests and SiPM calibration: "Finger spectra"

- Functional tests of electronic parts and its communication with TAXI
- Use of a calibration setup to obtain the parameters of each SiPM cookie board before installation into the detectors

Finger spectra of a SiPM

SPOCK adjustments for new TAXI and new detector readout (uDAQ) ongoing

thomas.huber@kit.edu

Example SiPM Cookie Board characterization – PDE & Gain at room temperature

ightarrow PDE: As example influences the PE/MIP light yield of the scintillator

ightarrow Gain: To distinguish the charge deposit per MIP and to ensure an uniform detector array

Example calibration: SiPM Gain at low temperatures

- Low temperature tests of the electronical components (Cookie Board, uDAQ)
- SiPM calibration at different low +-mperatures

\rightarrow

The SiPM gain (and therefore the charge deposit in the DAQ at a MIP event) strongly depends on the temperature

SiPM waveforms by not adjusting the bias voltage at different temperatures

thomas.huber@kit.edu

In-detector fluctuations of the temperature at the Pole

Example Control loop for one scintillation detector

$$U_{Panel\ 002_{(T)}} = 56.89V - 0.022 \frac{V}{^{\circ}\text{C}} \cdot (25^{\circ}\text{C} - \frac{43562 - T_{dec}}{209})$$

14 thomas.huber@kit.edu

One goal of: Charge deposit uniformity

Understanding the whole readout chain

 $\begin{array}{c} \text{Scintillator +} \\ \text{Routing} \end{array} \rightarrow \begin{array}{c} \text{Design +} \\ \text{Frame} \end{array} \rightarrow \begin{array}{c} \text{Optical} \\ \text{Coupling} \end{array} \rightarrow \begin{array}{c} \text{Photosensor} \\ \text{(SiPM)} \end{array} \rightarrow \begin{array}{c} \text{uDAQ} \end{array} \rightarrow \begin{array}{c} \end{array}$

TAXI

well enough to ensure an uniform detector array

Muon Tower at KIT

Limited streamer tube panels with a spatial resolution of 1 cm² to obtain the efficiency of an IceScint detector

IceScint scintillation detector MIP LST Panel #1 LST Panel #2 LST Panel #3 Schematic of the setup

Adjustments for new TAXI and new detector readout (uDAQ) ongoing

IceScint scintillation detector

Photo of the setup (2017)

Muon Tower at KIT – Results with first batch (2017) of scintillators

"Muon tomography" → Possible to check the finished detector for production issues before shipping Charge histograms → To distinguish a.e. the PE/MIP ratio

Calibration results with first batch (2017) of scintillators

Time	Detector	Cookie Board	Gain	V_Bias+3V	MIP (all, Me)	PE per MIP	Gain SPOCK *10^5
07.08.2017, 09:42	002-25	9	High Gain	56,56	389,70	41,19	5,17
07.08.2017, 10:42	003-25	10	High Gain	56,58	416,00	45,56	4,99
07.08.2017, 16:00	004-25	11	High Gain	56,76	385,47	39,52	5,33
08.08.2017	005-25	12	High Gain	56,45	345,83	36,62	5,16
08.08.2017	006-25	13	High Gain	56,84	402,94	42,59	5,17
09.08.2017	007-25	14	High Gain	56,64	382,59	40,13	5,21
10.08.2017	008-25	15	High Gain	56,89	414,33	42,72	5,30
11.08.2017	009-25	16	High Gain	56.61	413,41	42,38	5,33
06.09.2017	010-25	17	High Gain	56,70	374,03	39,08	5,23
11.08.2017	011-25	18	High Gain	56,75	341,08	35,57	5,24
16.08.2017	012-25	19	High Gain	56,58	359,71	37,30	5,27
14.08.2017	013-25	20	High Gain	56,75	366,52	38,00	5,27
17.08.2017	014-25	21	High Gain	56,83	384,73	40,74	5,16
2. Run: 04.09.2017	015-25	22	High Gain	56,40	367,70	38,94	5,16
18.08.2017	016-25	23	High Gain	56,64	399,34	41,97	5,20
18.08.2017	017-25	24	High Gain	56,52	361,62	38,00	5,28
21.08.2017	018-25	25	High Gain	56,70	369,26	38,80	5,20
21.08.2017	019-25	26	High Gain	56,32	372,74	39,17	5,23
22.08.2017	020-25	27	High Gain	56,51	394,84	41,49	5,15
22.08.2017	021-25	28	High Gain	56,40	354,14	37,22	5,12
23.08.2017	022-25	29	High Gain	56,52	369,49	38,83	5,10
23.08.2017	023-25	30	High Gain	56.53	352.81	37.08	5,20

Muon tower PE/MIP results and SPOCK SiPM gain results for each detector

Notes SPOCK measurements:

Room temperature and a light source wavelength of 423 nm

Notes muon tower measurements:	
010-25:	Strange signal behaviour in first run due to new power supply of muon tower
015-25:	Second Run: Changed PWR cable GPB->ARM

Next step(s): Full system test in Madison / PSL cooling chambers

2017 (and 2019) :

Necessary (among others...):

- A calibrated "ready to ship" TAXI
- Finishing the calibration setups with uDAQ and TAXI in the labs
- Understanding Scintillator panel readout <-> TAXI pipeline
- 8 fully calibrated scintillators at room temperature
- A "full system test" at room temperature at KIT

Additional Slides

Status SPOCK Lab for uDAQ / Cookie Board / Scints (roughly): IV-Curve, breakdown voltage

Status SPOCK Lab for uDAQ / Cookie Board / Scints (roughly): Temperature sensor test

thomas.huber@kit.edu

Status SPOCK Lab for uDAQ / Cookie Board / Scints (roughly): Checking SiPM waveforms w. Cookie boards

Status SPOCK Lab for uDAQ / Cookie Board / Scints (roughly): Dark count spectra

Status SPOCK Lab for uDAQ / Cookie Board / Scints (roughly): Finger spectra

Muon tower measurements with uDAQ

Before (Old IceScint panels):

- Analog Signal of the IceScint Detector
- 3x Analog Signal of the Muon Tower LST panels

- Waveform integration for the charge deposit

- mean pulse width calculation

done by muon tower DAQ and software

Muon tower measurements with uDAQ

TAXI Mainboard

Distribution PE/MIP of the first 24 scintillation detectors

Charge spectra fit season 2017 scint panels

Optical Coupling SiPM / fiber bundle / Cookie Board

New Cookie board + Waveform test with SPOCK

Photosensor: Why Silicon Photomultiplier (SiPMs)?

	PMT	SiPM
PDE	20-40%	20-60%
Gain	10 ⁶	10^{6}
Dark noise rate	~Hz 🕚	~MHz 😕
Behaviour in magnetic fields		<u> </u>
Operation Voltage	1000+ V 🙁	50-70 V 🕚
Temperature sensitivity	0	
Robustness and compactness		<u> </u>

Our candidate: Hamamatsu 513360 series

 $PDE = \frac{Number of detected photons}{Number of incident photons}$

Why SiPMs as photosensors?

Performance increases at low temperatures:

- Less dark counts
- Less bias voltage needed
- Higher PDE
- ...

No better place on Earth (beside the Lab) to operate SiPMs than: At the South Pole

Used SiPM: Hamamatsu S13360-6025PE

