In situ surface radio calibration

Hrvoje Dujmović Gen2 Calibration Workshop 08.04.2020

Motivation

- Lab calibration of electronics relies on assumptions on how to individual parts work together
- Can miss effects that are only present in the field

 \rightarrow Use the Milky Way as a calibration source in the field

- Offers an additional cross-check
- Method has been successfully demonstrated by LOFAR

Radio data from the Pole

• Jan 2020: A full prototype station deployed

- 3x Antennas
- 8x Scintillator panels
- 1x Field hub
- Physics data
 - Triggered by scintillators observing a shower
- Background data
 - Recorded every ~10s by a software trigger
 - Used for various calibration

and detector performance studies

• For each trigger we record:

3 antennas x 2 polarisation x $1/4\mu$ s traces

×

×

• 1 GHz sampling frequency

Detector monitoring

- Background data is used for monitoring of the detector performance
- Increased noise period due to software issues excluded from the analysis here
- An automated monitoring system could find such issues in the future

Radio noise sources

- Compute spectral power for each BG trace
 - Stack the spectra to obtain the power distribution
- Expected sources of the BG
 - Galactic radio emission
 - Noise of the amplifier and readout electronics
 - Man-made RFI
 - Some of this noise seems constant while other varies strongly with time

Electronic noise contribution

- ~1 day of data was recorded with one of the antennas disconnected
 - Only electronic noise is measured (& possibly RFI picked up though the cables)
 - Only significant at very low and high frequencies
 - Not very relevant for air-shower detection (~100-300MHz)

Galactic noise

- Use LFmap to get radio sky maps for each frequency
- Convolve the spectrum with the antenna response

 \rightarrow Expected Galactic noise for a given antenna orientation

Galactic noise oscillations

• Galactic emission and antenna pattern highly anisotropic

→ Noise amplitude expected to oscillate with period of $\frac{1}{2}$ sidereal day (~11.97 h)

• To compensate for noise variations due to other effects, look at the noise ratio between two polarisations

Oscillation period

- Oscillation amplitude fitted for various periods
 - Best fit 11.97h matches with ½ sidereal day
 - 12 h period (solar or terrestrial noise sources) not dominant

Oscillation amplitude fits

An oscillation fit is performed for each frequency:

$$P_{tot}(f) = P_0(f) \cdot (1 + A(f) \cdot sin(\omega t + \phi(f)))_{g}^{\text{fg}}$$

Period and phase fixed to expected values Relative oscillation amplitude A(f) fitted

Galactic noise fraction

 $A_{\text{observed}}(f)$

 $A_{\text{predicted}}($

- Assume only the galaxy contributes to the oscillation at the ½ sidereal day period
- Can get relative content of the galactic noise at each frequency

BG_{total}

 Fraction >1 indicates RFI contamination in the oscillations

 BG_{gal}

 BG_{gal}

BG_{total}

Galactic noise spectrum

Total average noise corrected by galactic noise fraction

Unamplified spectrum prediction from LFmap

Galactic gain calibration

Electronic gain can be obtained from measured/predicted galactic spectra

Conclusions

- Human activity and Milky Way dominant noise sources at observed frequencies
- Galactic noise follow a predictable pattern that can also be seen in the data
- Electronics gain can be computed by comparing measured and predicted galactic spectra
 - Can offer a cross check for lab calibrations and monitoring of long-term detector behaviour
 - Currently a proof of concept, accuracy limited by RFI at the moment
 - <1 year of data mostly in summer</p>
 - \rightarrow a lot of cross-contamination due to man-made transient noise
 - A longer data set would let the RFI get averaged out better
 - Current prototype station close to ICL \rightarrow fairly high RFI
 - Long -term study of the RFI patterns needed to better disentangle it from the galactic background

