

Calibration provided by the Gen2 Surface Array to IceCube-Gen2 in-ice arrays

Frank G. Schroeder

<u>Acknowledgement of support:</u> U.S. National Science Foundation-EPSCoR (RII Track-2 FEC, award ID 2019597)

Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE, USA, and Karlsruhe Institute of Technology (KIT), Institute for Nuclear Physics , Karlsruhe, Germany

UD – University of Delaware KIT – The Research University in the Helmholtz Association www.udel.edu www.kit.edu

Content: Potential Calibrations provided by Surface Array

General thoughts on calibration regarding the surface array

Cosmic-Ray Calibration in a wider sense

- 1) in-situ measurement of cosmic-ray flux that produces atmospheric backgrounds in the ice
- 2) veto: calibrate / cross-check estimations for signalness of neutrino candidates

Calibrations provided by Gen2 surface array, to other detector components

- muon calibration of the optical array \rightarrow see Bai's talk
- 3) uncontained IceTop/IceCube coincidences
- 4) energy scale of shallow radio antennas
- 5) cosmic-ray showers detected by in-ice radio array

Gen2 Surface Array Calibration of in-ice arrays

Calibration: Improve Accuracy by Reducing Syst. Uncertainties

Higher accuracy for

- particle energy, type, direction
- signalness of neutrino candidates

- by improving precision
 - statistics \rightarrow not calibration
 - detector-to-detector variations, e.g., by production
 - event-to-event variations, e.g., due to temperature
- by improving trueness
 - systematic offsets (biases)
 - interpretation of detector signals using models

Gen2 Surface Array Calibration of in-ice arrays

IceCube-Gen2 Calibration Workshop

Gen2 Surface Array Calibration of in-ice arrays

Cosmic-Ray Air Showers

- Muons, electrons and electromagnetic emission detectable at ground
- Flux of muons and neutrinos in the ice has systematic uncertainties due to not fully understood *hadronic interactions* and due to the *mass composition* of the primary CRs

 \rightarrow Mass composition important for astrophysical neutrinos and for atmospheric backgrounds.

Complementary Techniques for CR

- IceCube: Electrons + GeV muons with surface detector, TeV muons in the ice
- Combination with radio (shower maximum) provides desired increase of overall accuracy for the energy and mass of primary particle

Radio detection of cosmic-ray air showers and high-energy Neutrinos" F.G. Schröder, Prog. Part. Nucl. Phys. 93 (2017) 1, arXiv: 1607.08781

> fgs@udel.edu frank.schroeder@kit.edu

09 Apr 2021 IceCube-Gen2 Calibration Workshop

5

Gen2 Surface Array Calibration of in-ice arrays

Indirect Cosmic-Ray Measurements

- Accuracy of energy measurement limited by absolute antenna calibration
- Accuracy of mass of primary particle depends on interpretation of air-showers observables measured by detectors
 - unknown systematic uncertainty for interpretation of muons (all models out of range)
 - small systematic uncertainty for interpretation of X_{max} (approx. H to He difference)
- IceCube can help to constrain models which will enable a more accurate interpretation of data already recorded.

virtuous circle of cosmic-ray physics

6

Gen2 Surface Array Calibration of in-ice arrays

09 Apr 2021 IceCube-Gen2 Calibration Workshop

7

Gen2 Surface Array Calibration of in-ice arrays

1) Calibration of atmospheric backgrounds in the ice

- Surface Array will provide *in-situ measurement of cosmic-ray flux*
 - improve understanding of atmospheric muons: conventional and prompt
 - improve estimation of *atmospheric neutrino flux*

IceCube-Gen2 Calibration Workshop

Gen2 Surface Array Calibration of in-ice arrays

Veto by Gen2 Surface Array

Direct (tracks through surface array) and indirect (check any candidates) veto for the optical array

→ Potential for consistency check: is the predicted signalness of neutrino candidates consistent with the fraction of vetoed events

09 Apr 2021 IceCube-Gen2 Calibration Workshop

antenna scintillators (not to scale)

> Gen2 Surface Array Calibration of in-ice arrays

Baseline design of Gen2 Surface Array: one station per optical string (122)

- 4 pairs of scintillators enabling low
 - threshold for veto
 - 3 radio antennas increasing accuracy at high energies

2) New idea under investigation: radio veto for inclined showers

- Partial veto of inclined showers to improve detection of 10+ PeV neutrinos
 - IceCube-Gen2 could have 1-2 candidates of 10+ PeV neutrinos per year at 70-90° zenith
 - Surface antennas can provide partial veto where N_{background} ≈ N_{signal}

IceCube-Gen2 Calibration Workshop

Calibration of in-ice arrays

Possible synergy with radio array

- Can surface antennas at the radio array provide a partial veto for 10+ PeV neutrinos for the optical array?
- Optimized layout may yield a few extra neutrinos.
- Also may be used to calibrate and test signalness models of neutrino searches by optical array.

11 09 Apr 2021 IceCube-Gen2 Calibration Workshop Gen2 Surface Array Calibration of in-ice arrays

fgs@udel.edu frank.schroeder@kit.edu

332 PeV, 78.5 deg

20000

3) Calibrate IceTop for uncontained showers

- IceTop has a large exposure of contained events with the shower axis determined by the in-ice detector.
- With the Gen2 surface array we can check the reconstruction accuracy of such uncontained events
- →improve ~15 years of IceTop data on tape by then
- These are valuable for muon measurements and for ultrahigh-energy showers.

Gen2 Surface Array Calibration of in-ice arrays

4) Calibrating Radio Array: Common Energy Scale

Integral over radio footprint provides accurate estimator of absolute energy

Calibration of in-ice arrays

frank.schroeder@kit.edu

IceCube-Gen2 Calibration Workshop

Radio can be used to calibrate energy scales

- External reference and/or same antenna type between experiments gives absolute scale
- Can be used to compare IceTop to other CR air-shower arrays and to in-ice radio. 2000

LOPES, LOFAR, and Tunka-Rex antennas all absolutely calibrated with exactly same reference source.

Even better would be to use the same physics antennas \rightarrow K. Mulrey plans to check other arrays with SKALA v2.

Gen2 Surface Array Calibration of in-ice arrays

1000

-1000

-2000

Calibration of Shallow Radio Stations

- For inclined showers the complete radio emission is released in the atmosphere
- Surface antennas would measure same radiation energy as in-ice antennas
- → can be used to calibrate energy scale of shallow radio stations to IceTop scale

atmosphere

muonic component

Gen2 Surface Array Calibration of in-ice arrays

5) Calibration of in-ice radio stations by surface stations

A small overlap of the surface an in-ice radio arrays can be used for calibration on coincident air-shower events by *deep vertical showers*

Scintillators will measure shower at the surface

- energy, direction, and impact point
- Shower propagates into the ice and is detected by shallow and deep radio antennas
- Surface reconstruction can be used to test direction and energy reconstruction of in-ice radio array

Caveats:

- geometry different from neutrino-induced showers
- shower will develop in firn instead of deep ice
- radio emission in air partly by geomagnetic effect

 can be mitigated by observing showers parallel to geomagnetic field

see talk by Simon de Kockere yesterday

16 09 Apr 2021 IceCube-Gen2 Calibration Workshop Gen2 Surface Array Calibration of in-ice arrays

Conclusions

Gen2 Surface Array provides calibration in a wider sense

- more accurate *in-situ measurement of cosmic-ray flux* (energy scale, mass composition)

 → atmospheric in-ice signals/backgrounds
- extends IceTop's role for IceCube-Gen2

Various cross-checks of in-ice-detectors

- optical array: muons, veto/signalness, uncontained showers
- radio array: energy scale, cross-check of shower reconstruction

Many ideas at stage of brainstorming and first discussions to be continued in Gen2 Surface Array Working Group

- bi-weekly calls Thursdays 11am; typical duration ~ 60-100min
- Wikipage: https://wiki.icecube.wisc.edu/index.php/Gen2_Surface_Array

Gen2 Surface Array Calibration of in-ice arrays

Backup

Gen2 Surface Array Calibration of in-ice arrays

Science Goals: Overview – Resorted by preliminary priority

Science Goal	Scientific Measurements and Observables
Cosmic-Ray Physics	 Hadronic interactions: improvements in surface muon measurements over Gen1; larger range of zenith angles for in-ice coincidences, higher energies, prompt muons CR anisotropies: Close the anisotropy gap (no significant measurements between few PeV and EeV) using ~10x increase in aperture at high energies Extend Mass composition over energy to higher energies: overlap with Auger and TA for Galactic-extragalactic transition at a competitive accuracy
Veto	 Check down-going real-time alerts. IceTop retracted 3 alerts in 2020. Also the Gen2 surface will be used in automated checks for selection of candidates. Veto for small zenith angles with increased solid angle compared to Gen1.
Calibration of in-ice detectors	 Physics calibration of the in-ice atmospheric leptons (prompt and regular atm. neutrinos + muons): in-situ calibration of the cosmic-ray flux Calibration of in-ice radio antennas with air-showers detected by surface array: cross-calibrate absolute energy scales Muon bundles / single muons can be used as a cross-check of the dedicated calibration instruments in the ice and of the overall track reconstructions
Other	 PeV photon search with surface array for Galactic Center and with in-ice coincidences for increased solid angle. → Discovery potential for Galactic sources. Fits multi-messenger mission of IceCube.

Gen2 Surface Array Calibration of in-ice arrays

Baseline Design Follows Planned Enhancement of IceTop

21 09 Apr 2021 IceCube-Gen2 Calibration Workshop Gen2 Surface Array Calibration of in-ice arrays

Gen2 Surface Array – Baseline design according to Whitepaper

scintillators

(not to scale)

Baseline Design

- 1 station per optical string (122)
- + fill gaps to Gen1 array
- + few at in-ice radio stations
- Higher aperture for increase in max. energy and precision
 - 8-10x aperture surface only
 - 30x aperture for coincidences with optical in-ice array
- Under discussion beyond Gen2 Whitepaper (pending justification and review)
 - shallow muon detectors up to 200m
 - IceAct as instrument for low-energy cosmic rays

Gen2 Surface Array Calibration of in-ice arrays

Simulation of Baseline Design

Simulation of Baseline Design

- Reconstruction resolution improves with energy (and with number of detectors)
- Simulation study still ongoing
 - in-ice coincidences: shower at the surface + TeV muons in the ice
 - surface antennas provide calorimetric energy and X_{max} at high energies

Surface Array in MSRI2 Preproposal Gen2 Phase2 - Layout

One station of scintillators + antennas per optical string, i.e., per red circle

IceCube-Gen2 Calibration Workshop

Calibration of in-ice arrays

Cosmic-Ray Energy Spectrum and Anisotropy

Goal: Origin of the most energetic Galactic CR and transition to extragalactic CR

HAWC+IceCube

HAWC

K-Grande

Baksan

EAS-TOP

MACRO

- energy spectrum, mass composition, anisotropy
- IceCube will remain a key player in the field

26 09 Apr 2021 IceCube-Gen2 Calibration Workshop Gen2 Surface Array Calibration of in-ice arrays fgs@udel.edu frank.schroeder@kit.edu

ARGO-YBJ

Tibet-AS γ

Super-K

Milagro

IceTop

IceCube

Increase of aperture

IceCube-Gen2 Calibration Workshop

- Surface-only aperture 8x larger for contained events, 10x larger when requiring at least 100m distance from boarder: 0.515 km² → 5.22 km²
- Aperture for in-ice coincidences (2d hull of scintillators, 3d hull of strings) 34x larger: 0.26 km² sr → 8.8 km² sr
- All apertures valid above full-efficiency threshold

Calibration of in-ice arrays

Enhanced IceTop

fgs@udel.edu frank.schroeder@kit.edu

Gen2 Surface Array

Proposal 1 to extend design of Surface Array: IceAct

- IceAct can contribute to and extend the science case of the Gen2 surface array
 - depends on number of telescopes and configuration of array
- Lower energy threshold than other surface detectors
 - energy spectrum, mass composition, coincidences with inice array starting at 10 TeV

28 09 Apr 2021 IceCube-Gen2 Calibration Workshop

Gen2 Surface Array Calibration of in-ice arrays fgs@udel.edu frank.schroeder@kit.edu

Air shower

Telescopes

surface level

Cherenkov

light pool

Proposal 2 to extend the baseline design: Buried muon detectors

- Muon spectroscopy would be enabled by dedicated muon detectors at different depths, e.g., between 50-200 m below the surface
- Under investigation
 - Additional gain in science needs to be quantified
 - What type of detectors?
 - How many?
 - How expensive?
- Need to discuss how this could fit into the schedule for phase 2 or phase 3; or additional add-on possible?

Gen2 Surface Array Calibration of in-ice arrays