

Test and calibration procedure for the hardware of RNO-G

Maddalena Cataldo, postdoc at FAU, Erlangen

Gen2 Calibration Workshop, April 7-9, 2021

RNO-G calibration overview

The RNO-G calibration concept is work in progress, but the following aspects are planned (building on previous results and experiences):

> -Station surveying with differential GPS after deployment for initial antenna positions

-Local calibration pulsers (see RNO-G station figure) for local antenna positions (like in ARA, see talk by Kaeli Hughes) and snow accumulation (like ARIANNA, see talk by **Jakob Beise**)

 Calibration from the DISC borehole for full station calibration and ice properties (see talk by **Dave Besson** about SPUNK and South Pole SPICE measurements)

- Local density measurement: the Big RAID drill will (likely) provide density measurements for every hole drilled, providing a map of firn densities throughout the array.

RNO-G calibration overview

Lab calibration of all devices (this talk)

- Cosmic ray flux measurements with surface antennas (confirmation of **De Kockere**)

the last string, providing data to improve antenna simulations.

- Other calibration sources: CW sources like the twice-daily radiosonde **Deaconu** talks)

amplitude scale and system operation, see talk by Christian Glaser and Simon

- Vertical scan of antennas response: plans to turn the station pulser on while dropping
- and satellites, and airplanes (see Jakob Beise, Christian Glaser, Cosmin

RNO-G station

Three types of Amplifiers: Surface board

DRABs and **Surface boards** will be sitting in the DAQ box at the surface, will experience temperatures between -20°C and 20°C, and go through many temperature changes.

IGLUs : will be inside the ice at colder, but more static T between -40°C and -30°C.

DRAB Downhole Receiver and Amplifier Board

IGLU In-ice Gain with Low-power Unit

Instrument response

from

Recorded waveform

All boards were tested using a **Vector Network Analyzer (VNA):** 4 S-parameters were measured to examine the transmitted and the reflected signals at the input and the output.

we want Electric field

So we need to study very well the hardware response

4-phase Test Procedure:

Was planned to test the survival and response of the boards at very low temperatures:

1. Function test

2. Stress test

3. Parameter influence

4. Temperature dependence

1. Function test:

First function test was performed to look for broken boards or non perfectly functioning boards. It was checked if all channels of all boards worked.

Figure 4.5: S-parameters of the DRABs [dB]. The same measurements in logarithmic form. The gain of the DRABs (bottom left) features a small characteristic drop at 326 MHz. 8

S-parameters:

2. Stress test:

2.1 In order to test the survival of the boards at very low temperatures: **Temperature Cycles** in the temperature chamber: 5 cycles from 0° to -50° for all amplifiers

2.2 Second S-parameters measurement at room temperature for all amplifiers

Result: All boards survived the stress tests: they worked before and after the temperature drop.

3. Parameter influence + other tests:

Crosstalk:

Crosstalk determines the disturbance due to other channels.

Noise figure:

Describes the amount of noise the amplifier board adds to the signal transmitted through the board.

10

(Surface board)

Measurements were done with a noise figure meter of a SURFACE board (left) and a DRAB (right).

4. Temperature dependence: Surface boards

[All RNO-G stations have a temperature sensor for continuous monitoring and correction]

—The gain increases with the decreasing temperature.

- Instead of measuring every board at multiple temperatures, the $T_{\rm room}$ gain measurement was multiplied with a **fit function G(f, T)** in order to calculate the gain at other temperatures.

- The fit function G(f, T) is obtained fitting the measurements of the temperature dependence of one board at T: 0°, -10°, -20°, -30°, -40°, -50° C

4. Temperature dependence: DRAB + IGLU

Testing **DRABs** and **IGLU** has to study the influence of the temperature of different components:

Test: One board inside the T-chamber while the other at room temperature. The fiber was either inside or outside the chamber.

Results:

- On the total down-hole chain measurements the IGLU temperature has the most influence.
- For T in -30° C -40° C the gain behavior is most uncertain: some channels showed an increased, some a decreased gain compared to the measurements at higher temperatures.

However, applying the corrections we obtain a maximum deviation of $\sim 7\%$ (at -40°)!

Database

- Centralized database of calibration values for all components
- Scaleable, controlled upload via limited web interface:
 <u>http://radio.zeuthen.desy.de</u>
- Will in the future integrate with our software for fully custom and time dependent detector descriptions

Add S parameter measurement of DRAB unit

DRAB

Go back to menu

Add another DRAB unit measurement

Allow override of existing entries

Select existing board or enter unique name of new board:

× -

B0032

new DRAB

specify data format:

Channel is working

comma separated "," 👘	units
	Hz × -
V × ~	
degrés -	

you entered 1000 frequencies from 10MHz to 5000MHz S11 mag 1000 values within the range of 0.006129V to 0.5697V S11 phase 1000 values within the range of -179.1deg to 179.8deg S12 mag 1000 values within the range of 0.09798V to 14.16V S12 phase 1000 values within the range of -180.0deg to 179.8deg S21 mag 1000 values within the range of 0.005677V to 0.04105V S21 phase 1000 values within the range of -179.9deg to 179.5deg S22 mag 1000 values within the range of 0.01643V to 0.3604V S22 phase 1000 values within the range of -179.8deg to 179.3deg

all inputs validated

RNO-G Calibration Plan:

- Extensive Lab testing of cables, amplifiers, etc.
- Field survey (GPS positions, local densities, local pulser drop)
- Calibration campaign (DISC borehole)
- Continuous monitoring (temperature sensors, local calibration pulsers, cosmic rays, CW, …)