# **Acoustic Modules for IceCube-Gen2**

Calibration Workshop

April 7-9, 2021

**Christoph Günther**, Jürgen Borowka, Dirk Heinen, Andreas Nöll, Maximilian Scharf, Lars Steffen Weinstock, Christopher Wiebusch, and Simon Zierke

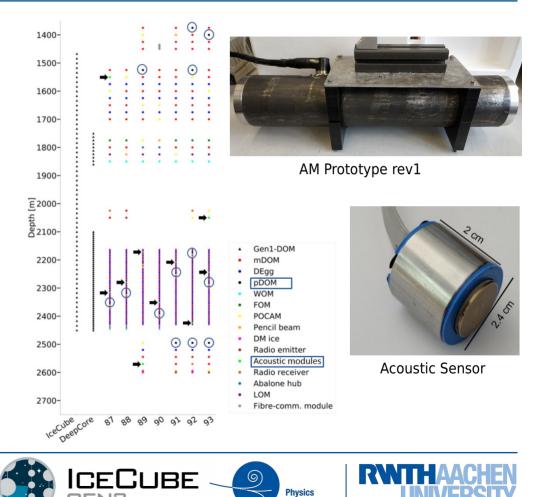
GEFÖRDERT VOM



Bundesministerium für Bildung und Forschung

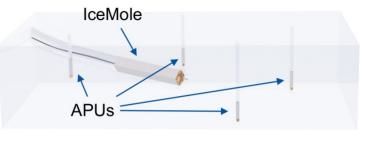


# IceCube Upgrade Acoustic System Overview

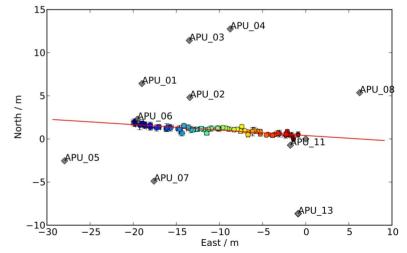

#### Acoustic Modules (AMs)

- 10 AMs are planned for the upgrade (7 in physics region, 2 above, 1 below)
- At least one on each string (87-93)
- AMs equipped with acoustic emitter and receiver; pDOMs equipped with acoustic sensors (measurement of travel time + trilateration)
- Geometry calibration using trilateration of acoustic signals to determine the positions of pDOMs/Ams (10 cm accuracy over >100m)
- Glaciological measurements of ice properties (ice movement, acoustical properties)
- Based on experience from EnEx-RANGE

Acoustic Modules for Gen2 Calibration Workshop


Christoph Günther | 07.04.2021

2




Institute III B

- Goal: robust localization of a maneuverable melting probe (IceMole) in instrumented ice volume
- Development of 13 melting probes with acoustic instrumentation (APUs)
- Achieved accuracy of 0.32 m for moving object in 30 m x 40 m x 10 m volume of glacial ice with  $\lambda_{att} = 8.7 m$
- With cold ice in IceCube (  $\lambda_{att} = 300 m$ )\* larger distances at same accuracy possible (d > 300 m)



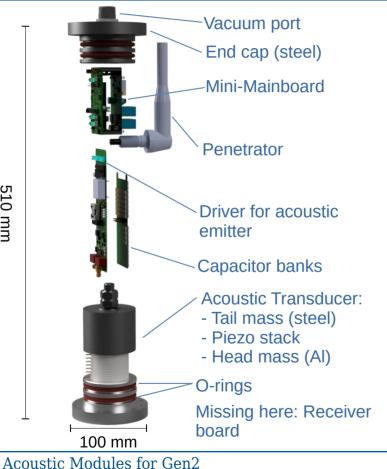
[Source: Dmitry Eliseev]



**Physics** 

Institute III B

CUBF


GEN2


\*Abbasi et. al., "Measurement of Acoustic Attenuation in South Pole Ice", DOI:10.1016/j.astropartphys.2010.10.003

Acoustic Modules for Gen2

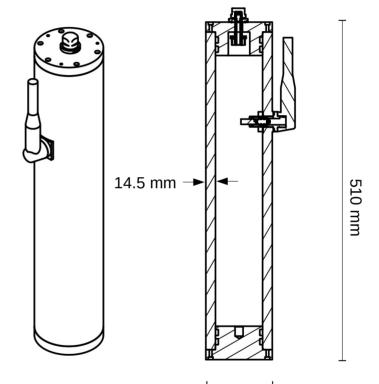
- 3 Calibration Workshop
  - Christoph Günther | 07.04.2021

# Acoustic Module Technical Design





AM Prototype rev1




510 mm

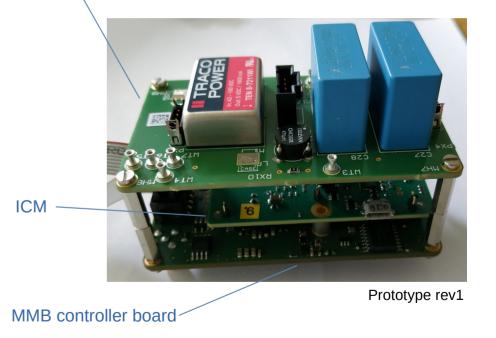
4

Calibration Workshop Christoph Günther | 07.04.2021

- Housing made of contruction steel S355 (UTS = 355 MPa)
- Designed for pressure resistance up to 70 MPa
- Vacuum port allows reducing/balancing pressure in the housing
- Penetrator cable assembly at the side
- Total weight ~22kg



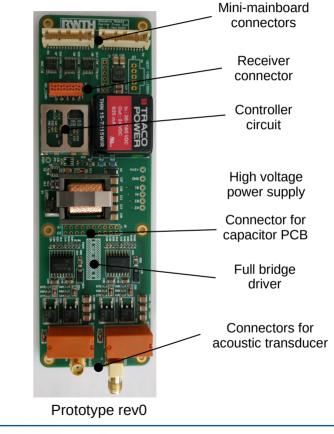





# Electronics: Mini-Mainboard (MMB)

- Used by many different new Upgrade devices (Acoustic module, pencil beam and POCAM, ..)
- Developed in Aachen together with Madison
- Stack of 3 boards (5 x 8.5 x 6 cm<sup>3</sup>):
  - MMB Power Board
    - Filters signals from surface
    - Provides power supply for other electronics
  - MMB Controller Board
    - STM32 H743ZIT microcontroller
    - 30 GPIOs, 2x I2C, 2x SPI, 2x UART
    - Slow control: Magnetometer, accelerometer, pressure sensor
  - ICM (Ice Comms Module)
    - Communication with surface
    - Provide timestamps to in-ice devices

6

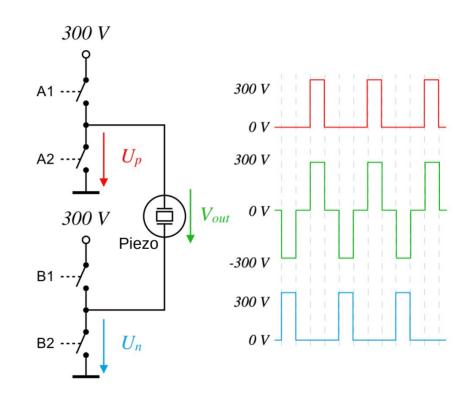

MMB power board





## **Electronics: Acoustic Emitter Driver**

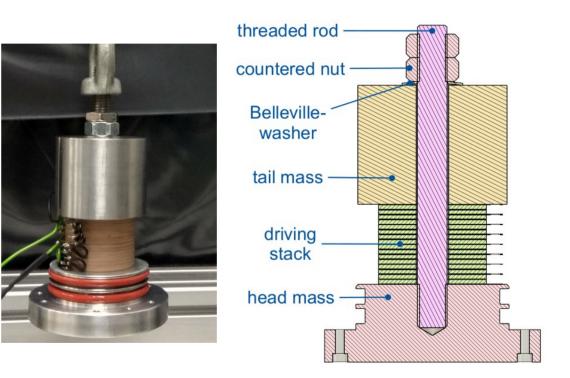
- **High voltage power supply** generates 300 V to charge capacitors
- **Storage capacitors** (stacked PCB) provide high power for short periods during emission
- **Full bridge driver** generates high voltage bipolar rectangular pulses to drive the acoustic transducer
- Controller circuit regulates high voltage power supply, generates waveform and controls full bridge driver
- Connected to Mini-Mainboard (SPI, 7 GPIOs, low voltage supplies, WP\_P/N)




Acoustic Modules for Gen2 Calibration Workshop Christoph Günther | 07.04.2021



# **Backup: Signal Generation**

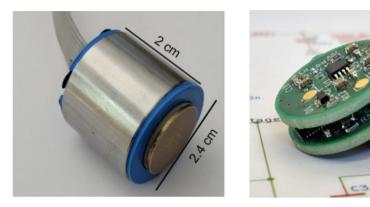

- Outputs bipolar rectangular pulses with three possible states +300V, 0V, -300V
- Steep rising/falling edges  $t_{rise/fall} = 100 \, ns$
- High sampling rate  $f_s = 2 MSps$
- Arbitrary waveform (chirp) possible as a series of output states +300V, 0V, -300V and state duration  $\Delta_{tick} = 0.5..300 \,\mu s$



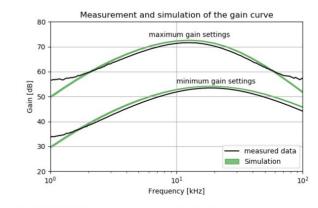


## Acoustic Transducer

- Tonpilz-style piezoelectric transducer
- Driving stack with 16 piezoelectric discs (Sonox P4,  $r_o = 50 mm$ ,  $r_i = 15 mm$ , h = 2 mm)
- Aluminium head mass (0.635 kg)
- Steel Tailmass (1.36 kg)
- Improved head-to-tail-ratio ( $M_H: M_T \approx 1:2$ )
- Resonance frequency ~10 kHz
- Based on EnEx-RANGE design; tested on alpine glaciers






### **Acoustic Receiver**

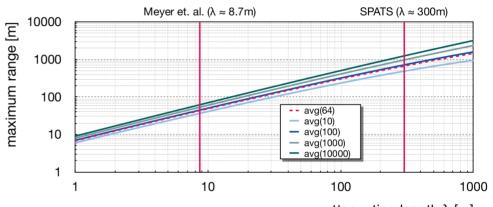
- Modified schematic design based on EnEx(-RANGE) project (Simon Zierke)
- Digitizes acoustic signals from acoustic transducer
- Variable gain to match unkown enviromental noise
- Bandwidth (-3dB):
  - 7,8 kHz 45 kHz @ 53dB
  - 5,8 kHz 25 kHz @ 72 dB
- Full functioning acoustic sensor ready to be integrated to DOM-sphere



Acoustic sensor prototype rev1






Single PCB sensor rev1.2, 4,9 x 2,8 cm

ICECUBE Physics BENZ Physics Institute III B

Acoustic Modules for Gen2 Calibration Workshop Christoph Günther | 07.04.2021

# **Performance Estimation**

- Measured attenuation length in glacial (warm) ice: 8.7 m (Meyer et. al., EnEx-RANGE)
- Measured attenuation length in shallow antarctic (cold) ice: 300 m (SPATS)
- We expect the attenuation length to be smaller than measured by SPATS (ice is slightly warmer at larger depths)
- By extrapolating EnEx data of a glacier measurement, the range in antarctic ice can be estimated
- For an attenuation length of 100 m a range of ~300 m is expected

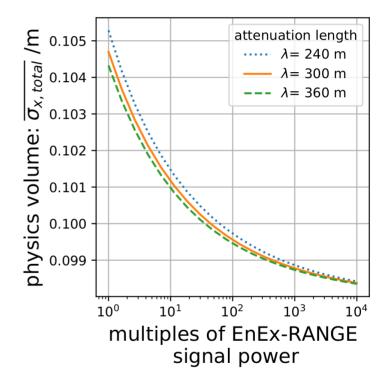


attenuation length  $\lambda$  [m]

Extrapolation of EnEx-RANGE data (old transducer design) in glacial ice (att. length  $\lambda \approx 8.7 m$ ) to antarctic ice ( $\lambda \approx 300 m$ ) for *SNR* = 5:1 results in maximum ranges > 100 m

SPATS: South Pole Acoustic Test Setup

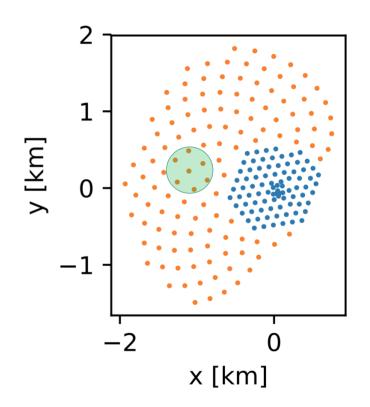
Acoustic Modules for Gen2 Calibration Workshop Christoph Günther | 07.04.2021

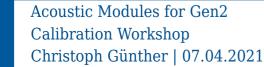



# **Performance Estimation**

- Simulations of the acoustic signal propagation for the Upgrade configuration have been carried out
- The simulations indicate a resolution of ~10 cm for different attenuation lengths and signal powers
- Master thesis by Maximilian Scharf

| $\sigma_{ m spatial}$          | 12.8 µs                         |
|--------------------------------|---------------------------------|
| $\sigma_{ m synchronization}$  | 5.0 µs                          |
| $\sigma_{ m Shannon}$          | given by SNR( $\lambda$ , $n$ ) |
| $\lambda$                      | 300 m[3]                        |
| signal power <i>n</i>          | 10 x EnEx-RANGE Power           |
|                                | (which used 64 averages [48])   |
| constant speed of sound in ice | 3900.0 m/s[2]                   |

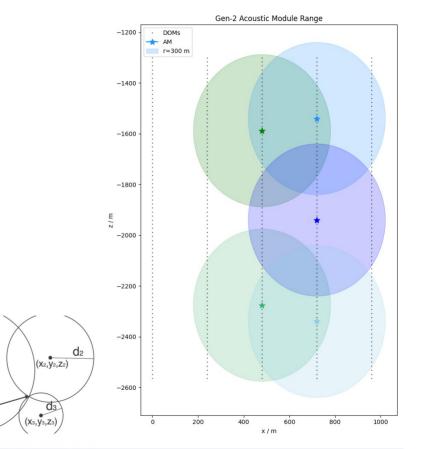

Table 4.1 · Assumptions of Simulation






## Strategies for Gen2

- Gen-2 geometry:
  - Sunflower geometry
  - String spacing: ~240 m
  - Module spacing: 16 m
  - Depth: 1.3 2.6 km
- Acoustic Module:
  - Range: ~300 m
  - ~6 strings within range (up to 175 DOMs)







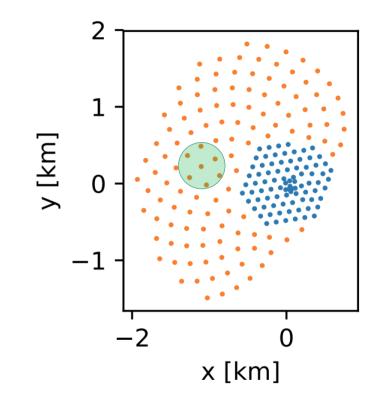

# Strategies for Gen2

- At least 3 transient times are required to locate a DOM
- Two possible approaches:
  - Determine the position of every DOM (~2-3 AMs per string, receivers in every DOM)
  - Determine only the end positions of strings and interpolate DOM locations (~1-2 AMs per string, receivers in some DOMs)
- Exact attenuation length needs to be measured in the Upgrade to determine the required number of AMs
- For non-spherical response more AMs might be required



14



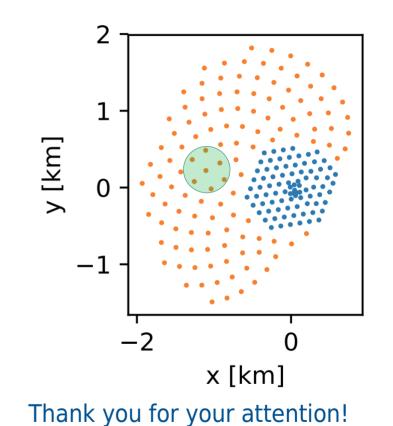

 $d_1 (x_1, y_1, z_1)$ 

(x,y,z)

# **Conclusion / Discussion**

- The Acoustic Module is a promising candidate for the geometry calibration of the upcoming IceCube Upgrade and IceCube Gen2 detector
- Using trilateration, the acoustic system aims for a resolution of ~10 cm of the DOM positions over a range ~300 m
- Range highly dependent on attenuation length → need to measure this in the Upgrade
- Which calibration strategy is favourable for Gen2?
- How can acoustic and optical calibration be combined?

Acoustic Modules for Gen2 Calibration Workshop Christoph Günther | 07.04.2021






# **Conclusion / Discussion**

- The Acoustic Module is a promising candidate for the geometry calibration of the upcoming IceCube Upgrade and IceCube Gen2 detector
- Using trilateration, the acoustic system aims for a resolution of ~10 cm of the DOM positions over a range ~300 m
- Range highly dependent on attenuation length → need to measure this in the Upgrade
- Which calibration strategy is favourable for Gen2?
- How can acoustic and optical calibration be combined?

Acoustic Modules for Gen2 Calibration Workshop Christoph Günther | 07.04.2021



