IceCube-Gen2 Radio Calibration Workshop

3

In-situ calibration device for the measurement of the snow accumulation and the index-of-refraction profile

Jakob Beise and Christian Glaser

Uppsala University, Sweden & Humboldt University, Germany Thursday, April 8th 2021

Firn properties and D'n'R technique

Credit: ARIANNA Collaboration, Journal of Cosmology and Astroparticle Physics 11(2019)030

Set-up for the snow accumulation measurement

Credit: ARIANNA Collaboration, Journal of Cosmology and Astroparticle Physics 11(2019)030

Snow accumulation measurement

Credit: ARIANNA Collaboration, Journal of Cosmology and Astroparticle Physics 11(2019)030

In-situ measurement for one ARIANNA station at Ross Ice-Shelf

- Scatter for averaged traces ~1 mm (5 ps) to ~ 5mm (25 ps)
- > Jumps in snow accumulation correlate to periods of high winds

Extension to the measurement of the n(z) profile

Refractive index with depth: $n(z) = n_0 - \Delta n \cdot \exp(-z/z_0)$ 1.78 Δn : change of refractive index **zo:** characteristic length > Reconstruct h, Δn, z_n ➤ 3 independent observables $\Delta t_{21} = t_2 - t_1, \Delta t_{31} = t_3 - t_1, \Delta t_{41} = t_4 - t_1$

Optimize emitter configuration

5

Optimizing emitter position

Simulate 10,000 measurements with event uncertainty of 0.2 ns
 Grid of possible conditions is constrained

 $\sigma_{h} \sim O(cm), \sigma_{z_{0}} \sim O(m) \Rightarrow \sigma_{comb} = \sqrt{(\sigma_{h}/1 cm)^{2} + (\sigma_{\Delta n}/0.0046)^{2} + (\sigma_{z_{0}}/34.5 cm)^{2}}$

Achievable precision

- Find configuration of emitters where reconstruction resolution and correlation between parameters is minimal:
- Reconstruction resolution independent of E1 position, E2 can always be placed so that combined resolution is good
 - \mapsto Correlation provides a clear minimum

optimal configuration: E1: [-115, -20] m, E2: [-30, -25] m

(per 100 events uncertainty)

(relative) Reconstruction Resolution	σ _h =4 mm	σ _{Δn} =0.08%	σ _{z0} =0.12%
Correlation	ρ _{h,Δn} = -4%	ρ _{h,z0} =-3%	$\rho_{\Delta n, z0} = 15\%$

- A) Emitter deployment uncertainty in x of ±1 cm
 σ(Δn) ~ 0.022%, σ(z₀) ~ 0.004%
- B) Emitter deployment uncertainty in z of ±1 cm
 σ(Δn) ~ 0.08%, σ(z₀) ~ 0.09%
- > C) Do we have a sensitivity to deviation from the exponential n(z) profile?

Summary

- ➢ In-situ calibration device for snow accumulation measurement
- ≻ Extension to a two emitter calibration device
 - ≻ **σ(h)** = 4 mm
 - ≻ **σ(∆n)** = 0.08%
 - ≻ **σ(z₀)** = 0.12%
- ➢ Study of systematic uncertainties likely the dominating factor
- > Impact of n(z) uncertainty on the v-direction reconstruction

Proposal: Equip every station with at least one emitter and check variation in n(z) profile for a few stations equipped with the two emitter calibration system. Adapt layout if necessary.

BACKUP SLIDES

Details of snow accumulation analysis

Credit: ARIANNA Collaboration,

Journal of Cosmology and Astroparticle Physics 11(2019)030

11

Reconstruction Resolution and Correlation

Reconstruction Resolution

-10

-15

-20

-25

-30

-35

-40

-140

vertical coordinate [m]

Correlation

number of repetitions: 200, number of measurements: 10000