IceCube event reconstruction

Tianlu Yuan IceCube Bootcamp June 10, 2021

IceCube

Detection principals

Neutrino interacts via weak force with targets in ice

• At IceCube energies, primarily deep-inelastic scattering (DIS) off nucleons

Nucleon breaks apart; outgoing particles may be charged Charged particles emit **Cherenkov radiation** detectable by PMTs

Cherenkov radiation

Occurs when a charged particle travels faster than light-in-medium

Constructive interference of EM-field to form a plane wave

Fig. 14.14 Cherenkov radiation. Spherical wavelets of fields of a particle traveling less than, and greater than, the velocity of light in the medium. For v > c, an electromagnetic "shock" wave appears, moving in the direction given by the Cherenkov angle θ_c .

Cherenkov radiation in water

What do neutrinos look like in IceCube?

muons: long paths in the detector \rightarrow **track**

What do neutrinos look like in IceCube?

electrons/hadrons: shower of light \rightarrow **cascade**

What IceCube actually sees (high-energy)

$$\nu_{\mu} + N \rightarrow \mu + X$$

track (data)

angular resolution ~ 0.5° energy resolution ~ x2

NC or CC electron neutrino

$$\nu_e + N \to e + X$$

 $\nu_x + N \to \nu_x + X$

shower (data)

angular resolution ~ 10° energy resolution ~ 15%

CC tau neutrino

- $\nu_\tau + N \to \tau + X$
 - "double-bang" (simulation)

~2 expected in 6 years

Tracks vs cascades

Tracks can travel large distance ~ first photons on Cherenkov cone Cascades travel relatively short distance ~ diffuse photons w. spherical front

Event reconstruction

Physics parameters and IceCube coordinates

 $\boldsymbol{\Theta} = (x, y, z, \theta, \phi, E, t)$

Detector coordinate system centered in middle of detector $(\theta, \phi) = (\text{zenith}, \text{azimuth}) \text{ corresponds to arrival direction}$ Usually, (θ, ϕ, E) are the physics parameters we're most interested in

Approaches for reconstruction

Tracks

• Use first-hit times for directional reconstruction (SANTA, SplineReco)

First-arrival time pdfs

PMT jitter (Transit time spread) due to spread in initial energies/momenta of photoelectrons arxiv:0407044

jitter

Additional effects due to:

- noise
- additional cascades along track
- scattering

σ 0 tres Original analytic parameterization jitter + showers jitter

0

ι_{res}

jitter + noise

"Pandel function" (gamma dist.) $p(t_{
m res}) \ \equiv \ rac{1}{N(d)} rac{ au^{-(d/\lambda)} \cdot t_{
m res}^{(d/\lambda-1)}}{\Gamma(d/\lambda)} \cdot e^{-\left(t_{
m res} \cdot \left(rac{1}{ au} + rac{c_{
m medium}}{\lambda_a}
ight) + rac{d}{\lambda_a}
ight)} \ ,$ $N(d) \;=\; e^{-d/\lambda_a} \cdot \left(1 + rac{ au \cdot c_{ ext{medium}}}{\lambda}
ight)^{-d/\lambda} \;,$

Now based on splines

+ scattering

MPE Pandel likelihood

Pandel function cannot cope with negative time residuals so need to convolute with Gaussian

https://user-web.icecube.wisc.edu/~boersma/PandelUpdates/MPEplots/

Gauss convoluted (fast-approx.)

SplineReco Resolutions

Improvements were made by moving to (photo)spline tables based on simulation (c.f. <u>K. Schatto thesis</u>)

Fast 1D Gaussian convolution using IIR approximation

Approaches for reconstruction

Tracks

- Use **first-hit times** for *directional* reconstruction (SANTA, SplineReco)
- Use **full-waveform** information by fitting predicted light yields to what is actually seen (RetroReco, DirectReco, MuEx, Millipede, DirectFit)
 - Millipede works for **high-energy tracks** by breaking it up into multiple cascades along the track due to muon stochastic energy losses

Example reco for a data event

Two approaches to **full-waveform** reconstruction

Tabulated photon yields

- Pros: Fast runtime; gradients
- Cons: Limited icemodels

Direct photon

propagation

- Pros: Any ice-model can be used
- Cons: Statistical errors from both data and MC; slow

IC collaboration, 1311.4767 D. Chirkin, arXiv:1304.0735

Two approaches to full-waveform reconstruction

Tabulated photon yields

- Pros: Fast runtime; gradients
- Cons: Limited icemodels

Direct photon

propagation

- Pros: Any ice-model can be used
- Cons: Statistical errors from both data and MC; slow

IC collaboration, 1311.4767 D. Chirkin, arXiv:1304.0735

Minimization approaches

Given a likelihood $\mathcal{L}(\Theta|X_{\text{Data}})$ as a function of $\Theta = (x, y, z, \theta, \phi, E, t)$, want to find Θ_0 that minimizes the negative likelihood

- Millipede uses photon tables which allows for iterative gradient descent
- DirectFit reruns photon simulation which is more computationally intensive

Low-energy reco: RetroReco and DirectReco

RetroReco: emit photons from DOM and track \rightarrow then build retro tables

DirectReco: like DirectFit but for lower energies

Approaches for reconstruction

Tracks

- Use **first-hit times** for *directional* reconstruction (SANTA, SplineReco)
- Use **full-waveform** information by fitting predicted light yields to what is actually seen (RetroReco, DirectReco, MuEx, Millipede, DirectFit)
 - Millipede works for high-energy tracks by breaking it up into multiple cascades along the track due to muon stochastic energy losses
- ML+LLH approaches (CascadeGenerator)
- Likelihood-free inference (FreeDOM)
- Energy reco (TruncatedEnergy)

FreeDOM

Likelihood-free inference using NN

Train a binary classifier that can be converted back into a likelihood

- We replace $\frac{\mathcal{L}(\boldsymbol{\theta}|\boldsymbol{x})}{p(\boldsymbol{x})}$ with the output of our neural network, $\boldsymbol{r}(\boldsymbol{x}, \boldsymbol{\theta})$
 - r is a ratio estimator; approximates the likelihood-to-evidence ratio
- $r(x, \theta)$ can be used anywhere you'd typically use a likelihood function
- Evaluating $r(x, \theta)$ is very fast (tens of microseconds)

eight hypothesis parameters: x, y, z, t, azimuth, zenith, cascade energy, track energy

parameters not being scanned are set to their truth values

Approaches for reconstruction

Tracks

- Use **first-hit times** for *directional* reconstruction (SANTA, SplineReco)
- Use **full-waveform** information by fitting predicted light yields to what is actually seen (RetroReco, DirectReco, MuEx, Millipede, DirectFit)
 - Millipede works for **high-energy tracks** by breaking it up into multiple cascades along the track due to muon stochastic energy losses
- ML+LLH approaches (CascadeGenerator)
- Likelihood-free inference (FreeDOM)
- Energy reco (TruncatedEnergy)

Cascades

 Use full-waveform information by fitting predicted light yields to what is actually seen (RetroReco, DirectReco, Monopod, DirectFit)

Challenges in cascade reconstruction

Large distances between DOMs means not many detected photons Small asymmetry means high dependence on ice modeling Sheer number of photons difficult to simulate

- 1. Tabulate photon yields for a single ice model (Millipede/Monopod)
 - Fast, less flexible, table generation time-consuming
- 2. Directly propagate all photons for any ice model (DirectFit)
 - Slow, more flexible

Cascade orientation from full-waveform

Minimization approaches

Given a likelihood $\mathcal{L}(\Theta|X_{\text{Data}})$ as a function of $\Theta = (x, y, z, \theta, \phi, E, t)$, want to find Θ_0 that minimizes the negative likelihood

Need to explore 7D space which is challenging

- Monopod uses photon tables which allows for iterative gradient descent
 - Doesn't always find the global minimum
- Can also **brute force** all possible directions (θ, ϕ) to reduce the minimization to only 5 dimensions

Cascade vs track skymap

Caveats with tables-based reco of cascades

Caveats with tables-based reco of cascades

Minimization approaches

Given a likelihood $\mathcal{L}(\Theta|X_{\text{Data}})$ as a function of $\Theta = (x, y, z, \theta, \phi, E, t)$, want to find Θ_0 that minimizes the negative-likelihood

Need to explore 7D space which is challenging

- Millipede/Monopod uses photon tables which allows for iterative gradient descent
 - Doesn't always find the global minimum
- Can also **brute force** all possible directions (θ, ϕ) to reduce the minimization to only 5 dimensions
- > DirectFit attempts to find minimum using **localized random search**, randomly sampling points in (x, y, z, θ, ϕ) within a "search radius" that is refined iteratively

DirectFit minimization

Likelihood gradually improves from start to finish

Following this, MCMC approach to sample from posterior pdf

DirectFit with directional PDFs

ABC outputs points on unit sphere (simulated event)

DirectFit with directional PDFs

Can then fit a PDF on a sphere to those points

Ice modeling is important!

Bulk ice described by scattering and absorption coefficients as a function of depth \rightarrow these have been refined over time

Ice layers were found to be tilted [arXiv:1301.5361]

Ice was also discovered to be anisotropic [ICRC 2013, 0580]

Directional bias due to different ice models

Ice affects cascade reconstruction

Directional bias due to different ice models

Ice affects cascade reconstruction

Ice uncertainties affect reconstructed directions

Directional uncertainties important for point-source searches

With Millipede/Monopod full-sky scan, can draw a contour at some value of Δllh derived from resimulations with different ice models

With DirectFit, can reconstruct with different ice-models and combine into larger contour

Approaches for reconstruction

Tracks

- Use **first-hit times** for *directional* reconstruction (SANTA, SplineReco)
- Use **full-waveform** information by fitting predicted light yields to what is actually seen (RetroReco, DirectReco, MuEx, Millipede, DirectFit)
 - Millipede works for **high-energy tracks** by breaking it up into multiple cascades along the track due to muon stochastic energy losses
- ML+LLH approaches (CascadeGenerator)
- Likelihood-free inference (FreeDOM)
- Energy reco (TruncatedEnergy)

Cascades

- Use **full-waveform** information by fitting predicted light yields to what is actually seen (RetroReco, DirectReco, Monopod, DirectFit)
- ML (FLERCNN, DNN)
- ML+LLH approaches (CascadeGenerator)
- Likelihood-free inference (FreeDOM)

Input pulseseries features into CNN

Comparison to Monopod

DNN trained on newer ice models

Monopod relies on tables built for older ice models (SpiceMie, effective SpiceLea)

Better resolution above ~10 TeV

CascadeGenerator

DNN outputs most probable direction and uncertainty estimators

CascadeGenerator outputs waveforms that can be used to construct a traditional likelihood

Approaches for reconstruction

Tracks

- Use first-hit times for *directional* reconstruction (SANTA, SplineReco)
- Use **full-waveform** information by fitting predicted light yields to what is actually seen (RetroReco, DirectReco, MuEx, Millipede, DirectFit)
 - Millipede works for **high-energy tracks** by breaking it up into multiple cascades along the track due to muon stochastic energy losses
- ML+LLH approaches (CascadeGenerator)
- Likelihood-free inference (FreeDOM)
- Energy reco (TruncatedEnergy)

Cascades

- Use **full-waveform** information by fitting predicted light yields to what is actually seen (RetroReco, DirectReco, Monopod, DirectFit)
- ML (FLERCNN, DNN)
- ML+LLH approaches (CascadeGenerator)
- Likelihood-free inference (FreeDOM)

Track + Cascade

• PeV hadronic showers with early muons (Lollipop)

Combining tracks and cascades

Hadronic showers at PeV energies may be accompanied by muons

• Outrun shower Cherenkov wavefront

Combining tracks and cascades

Hadronic showers at PeV energies may be accompanied by muons

• Outrun shower Cherenkov wavefront

 $t_1 = 328 \, \text{ns}$

3ms after t_1

Early pulses

Combining tracks and cascades

Hadronic showers at PeV energies may be accompanied by muons

• Outrun shower Cherenkov wavefront

Early pulses

Improvements in directional reconstruction

Cascade reco \rightarrow reco vertex/direction/energy \rightarrow Track reco w. vertex prior

Improvements in directions possible!

Reconstruction in IceCube is often a challenge

Many algorithms exist, separable into high-energy/lowenergy and track/shower

• Ice modeling is most important for cascades

Traditionally LLH-based approaches; recently a lot of ML/hybrid developments

Each has pros and cons ~ymmv

New approaches always welcome!

References

SANTA: https://doi.org/10.1016/j.astropartphys.2011.01.003

SplineReco: https://docs.icecube.aq/icetray/main/projects/spline-reco/index.html

RetroReco: https://github.com/icecube/retro

DirectReco:

https://indico.cern.ch/event/593812/contributions/2499791/attachments/1468178/2270620/snowicki_IC_direc treco_CAPtalk2017.pdf

MuEx: https://docs.icecube.aq/icetray/main/projects/mue/muex.html

TruncatedEnergy: <u>https://docs.icecube.aq/icetray/main/projects/truncated_energy/index.html</u>

Millipede: https://docs.icecube.aq/icetray/main/projects/millipede/index.html

DirectFit: http://icecube.wisc.edu/~dima/work/WISC/papers/2013_ICRC/dir/icrc2013-0581.pdf

FLERCNN: https://github.com/jessimic/LowEnergyNeuralNetwork

DNN: https://icecube.wisc.edu/~mhuennefeld/docs/dnn_reco/html/pages/about.html

CascadeGenerator:

https://events.icecube.wisc.edu/event/115/contributions/5977/attachments/5029/5566/2019_09_18_Tokyo_c generator.pdf

FreeDOM:

https://events.icecube.wisc.edu/event/125/contributions/7228/attachments/5679/6634/fienberg_freeDOM_pl enary.pdf

Backups

Local effects

Hole-ice

 Refrozen central column with high scattering

Looking up the string

DOM orientation

- Thick, support cable may impede direct photons if vertex is nearby
- A few DOMs may not be perfectly horizontal

Local effects: DOM orientation and cable position

