OREILLY"

Software Best
Practices

Becoming
Alex Olivas a Better
Madison Bootcamp 2021 Programmer

A HANDBOOK FOR PEOPLE WHO CARE ABOUT CODE

https://amzn.to/211YydH S PEEGOONIR

https://amzn.to/2I1YydH

If you want to go fast, go alone.

Peo p I e Powe r If you want to far, go together.

Good software development isn't technical as much as it
IS social.

e Readability Counts - Zen of Python

Optimize for the reader, not the writer - Google Style Guide

e "Code is meant to be readable to other programmers and only
incidentally to be run on machines" - Paraphrased from ?7?

e "Functions should fit on a screen and be simple enough that a
competent teenager can understand it." - Linux Kernel Style Guide

GOIden Trlangle - In search of a new name!

"Give one entity one Code "Correctness, simplicity,
cohesive responsibility." and clarity come first."

Entities with one true cohesive Simple code is easy to test and
responsibility is easy to test. document.

If an entity is difficult to test it Don't leave to documentation
might be a sign of poor design. what the compiler or runtime

system can enforce.

I've never regretted writing tests or

TeStS documentation. I've sometimes DOCU mentatlon

regretted not writing tests or docs..

Effective Version Control

Repository Layout

Invest time in a clear, easy to navigate layout.

README. rst :
LICENSE Prefer a stan.dard layout to .make it easy for
setup.py others to navigate your project. Increases
requirements. txt adoption.

sample/__init__.py
sample/core.py
sample/helpers.py
docs/conf.py
docs/index.rst
tests/test_basic.py
tests/test_advanced.py

For python projects prefer virtual environments
$ python3 -m venv my_virtual_env

$ source my_virtual_venv

$ pip install <some_lib>

$ pip freeze > requirements.txt

$ pip install -r requirements.txt

https://docs.python-quide.ora/writing/structure/

https://docs.python-guide.org/writing/structure/

Effective Version Control

Prefer short-lived branches (i.e. days)
Make small atomic commits.

Don't break the build.

Don't mix whitespace/formatting
commits with functional changes.

hob=

https://quides.qgithub.com/introduction/flow/

ADD COMMITS

.....................

CREATE A
BRANCH

Createabranchinyour

project whereyou can

safely experiment and
make changes.

OPEN A PULL
REQUEST

Use a pullrequest to get
feedback onyour changes
from people down the hall

or ten time zones away.

DISCUSS AND REVIEW

.....................

MERGE AND
DEPLOY

Merge your changes into
your master branch and
deploy your code.

https://guides.github.com/introduction/flow/

Effective Version Control

Make Small, Atomic Commits
"Commit early, commit often."

e Make the commits small enough that they don't break the code. What
constitutes "broken" code? - Doesn't compile. Tests don't pass.
e DO NOT commit something that covers more than one change: "git commit -m
'Refactor and critical bugfix and new feature and reformatted.' "
e DO NOT wait until the end of the day or week to commit.
DO NOT mix functional changes with whitespace cleanups.
e DO write good commit messages.
o Good commit message: "Fixes issue #123: Use std::shared_ptr to avoid
memory leaks. See C++ Coding Standards for more information."
o Bad commit message: "blerg"

Effective Version Control

Make Quality Commits - Don't break the build!!!

aRrowh =

Make change

Test that it builds against main

Ensure all the tests PAasSsS. (Invest in a test suite!!! e.g. python unittest)
Check it in w/ an informative commit message.
Check your continuous integration (Cl) system.

Measure test coverage with
pycoverge and display this
in README.md

Effective Version Control

Making Releases - https://help.qgithub.com/en/articles/creating-releases

Generating DOIs - https:/guides.qithub.com/activities/citable-code/

= E] olivasalex / bootcamp_2019

Code Issues 0 Pullrequests 0 Projects 0 Wiki Security Pulse Community

There aren’t any releases here

Releases are powered by tagging specific points of history in a repository.
They're great for marking release points like v1.0 .

Create a new release

https://help.github.com/en/articles/creating-releases
https://guides.github.com/activities/citable-code/

Effective Version Control

Semantic Version Numbers - https://semver.org/

Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards-compatible manner, and

3. PATCH version when you make backwards-compatible bug fixes.
Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH
format.

https://semver.org/

Coding Standards and Style Guides

Choose a style guide and integrate a linter into your workflow
e Python PEPS - https://www.python.org/dev/peps/pep-0008/
e Google Style Guides (14) - https://google.qgithub.io/styleguide/
e (C++ - https://isocpp.qgithub.io/CppCoreGuidelines/CppCoreGuidelines
Linters - Code Checkers
o (C++
o cpplint - hitps://github.com/cpplint/cpplint
o clang-analyzer - hitps://clang-analyzer.llvm.org
e Python
o flake8 - hitps://flake8.pycqga.org
o black - htips://black.readthedocs.io

https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://github.com/cpplint/cpplint
https://clang-analyzer.llvm.org
https://flake8.pycqa.org
https://black.readthedocs.io

lceCube Software Standing Orders

—

CO®NOOR~WLN -~

Be nice to people.

Give one entity one cohesive responsibility.

Correctness, simplicity, and clarity come first.

Use tests and documentation as internal design checks.
Strive for high test coverage.

Make small, atomic commits.

Keep whitespace commits separate from functional changes.
Prefer short-lived branches.

Don't break the build!

Invest in and commit to coding standards.

When in doubt “import this”

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one— and preferably only one —obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Nameipaces are one honking great idea — let's do more of those!
>>>

Exercise: Getting Started w/ GitHub

Use it or Lose it! https://agithub.com/

Username

Built for
developers

GitHub is a development platform inspired by the

&)

Make sure it's at least 15 characters OR at least 8 characters
way you work. From open source to business' you including a number and a lowercase letter. Learn more.

can host and review code, manage projects, and

build software alongside 36 million developers. Sign up for GitHub

https://github.com/

