
Software Best
Practices

Alex Olivas
Madison Bootcamp 2021

https://amzn.to/2I1YydH

https://amzn.to/2I1YydH

People Power

Good software development isn't technical as much as it
is social.

● Readability Counts - Zen of Python
● Optimize for the reader, not the writer - Google Style Guide
● "Code is meant to be readable to other programmers and only

incidentally to be run on machines" - Paraphrased from ???
● "Functions should fit on a screen and be simple enough that a

competent teenager can understand it." - Linux Kernel Style Guide

If you want to go fast, go alone.
If you want to far, go together.

Golden Triangle

Code

Tests DocumentationI've never regretted writing tests or
documentation. I've sometimes
regretted not writing tests or docs..

"Give one entity one
cohesive responsibility."

"Correctness, simplicity,
and clarity come first."

Simple code is easy to test and
document.

Don't leave to documentation
what the compiler or runtime
system can enforce.

Entities with one true cohesive
responsibility is easy to test.

If an entity is difficult to test it
might be a sign of poor design.

In search of a new name!

Effective Version Control

Repository Layout
Invest time in a clear, easy to navigate layout.

https://docs.python-guide.org/writing/structure/

Prefer a standard layout to make it easy for
others to navigate your project. Increases
adoption.
For python projects prefer virtual environments
$ python3 -m venv my_virtual_env
$ source my_virtual_venv
$ pip install <some_lib>
$ pip freeze > requirements.txt
$ pip install -r requirements.txt

https://docs.python-guide.org/writing/structure/

Effective Version Control
https://guides.github.com/introduction/flow/

1. Prefer short-lived branches (i.e. days)
2. Make small atomic commits.
3. Don't break the build.
4. Don't mix whitespace/formatting

commits with functional changes.

https://guides.github.com/introduction/flow/

Effective Version Control
Make Small, Atomic Commits
"Commit early, commit often."
● Make the commits small enough that they don't break the code. What

constitutes "broken" code? - Doesn't compile. Tests don't pass.
● DO NOT commit something that covers more than one change: "git commit -m

'Refactor and critical bugfix and new feature and reformatted.' "
● DO NOT wait until the end of the day or week to commit.
● DO NOT mix functional changes with whitespace cleanups.
● DO write good commit messages.

○ Good commit message: "Fixes issue #123: Use std::shared_ptr to avoid
memory leaks. See C++ Coding Standards for more information."

○ Bad commit message: "blerg"

Effective Version Control

Make Quality Commits - Don't break the build!!!
1. Make change
2. Test that it builds against main
3. Ensure all the tests pass. (Invest in a test suite!!! e.g. python unittest)

4. Check it in w/ an informative commit message.
5. Check your continuous integration (CI) system.

Measure test coverage with
pycoverge and display this
in README.md

Effective Version Control
Making Releases - https://help.github.com/en/articles/creating-releases

Generating DOIs - https://guides.github.com/activities/citable-code/

https://help.github.com/en/articles/creating-releases
https://guides.github.com/activities/citable-code/

Effective Version Control

Semantic Version Numbers - https://semver.org/

https://semver.org/

Coding Standards and Style Guides

Choose a style guide and integrate a linter into your workflow
● Python PEP8 - https://www.python.org/dev/peps/pep-0008/
● Google Style Guides (14) - https://google.github.io/styleguide/
● C++ - https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Linters - Code Checkers
● C++

○ cpplint - https://github.com/cpplint/cpplint
○ clang-analyzer - https://clang-analyzer.llvm.org

● Python
○ flake8 - https://flake8.pycqa.org
○ black - https://black.readthedocs.io

https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://github.com/cpplint/cpplint
https://clang-analyzer.llvm.org
https://flake8.pycqa.org
https://black.readthedocs.io

IceCube Software Standing Orders

1. Be nice to people.
2. Give one entity one cohesive responsibility.
3. Correctness, simplicity, and clarity come first.
4. Use tests and documentation as internal design checks.
5. Strive for high test coverage.
6. Make small, atomic commits.
7. Keep whitespace commits separate from functional changes.
8. Prefer short-lived branches.
9. Don't break the build!

10. Invest in and commit to coding standards.

When in doubt “import this”

Exercise: Getting Started w/ GitHub
Use it or Lose it! https://github.com/

https://github.com/

