Polarimetric radar sounding methods to characterise ice birefringence, fabric anisotropy, and flow history

TJ Young

Tom Jordan
Carlos Martín

Scott Polar Research Institute

Plymouth Marine Laboratory

British Antarctic Survey

PML $\left.\right|_{\text {Plymouth Marine }} ^{\text {Laboratory }}$

What is ice fabric?

- Ice fabric represents the collective orientations of ice crystals
- Represented by a $2^{\text {nd }}$ order orientation tensor with eigenvalues a along

The c-axis of a single ice crystal eigenvectors x :

$$
\begin{aligned}
& a_{1}+a_{2}+a_{3}=1 \\
& a_{1}<a_{2}<a_{3} \text { (radar, seismics) } \\
& a_{1}>a_{2}>a_{3} \text { (ice cores) }
\end{aligned}
$$

Ice fabric: c-axes of many ice crystals

Fabric anisotropy

- Fabric represents the deformation history of glacier ice
- "Complex history \rightarrow complex fabric"

Isotropic (near-random)

$$
a_{1} \approx a_{2} \approx a_{3} \approx 1 / 3
$$

Near-surface firn/ice Uniform deformation

Vertical girdle $a_{1} \ll a_{2} \approx a_{3}$ Centre of glacier Uniaxial compression, longitudinal extension

Vertical cluster

$$
a_{1} \approx a_{2} \ll a_{3}
$$

Near-bed ice

Planar simple shear

Horizontal cluster

$$
a_{1} \approx a_{2} \ll a_{3}
$$

Glacier shear margin Lateral simple shear

Birefringence in ice

Radar is able to detect the horizontal components of fabric anisotropy due to the birefringence of ice as an effective medium

$$
=\left[\begin{array}{ccc}
\varepsilon_{\perp}+a_{1} \Delta \varepsilon^{\prime} & 0 & 0 \\
0 & \varepsilon_{\perp}+a_{2} \Delta \varepsilon^{\prime} & 0 \\
0 & 0 & \varepsilon_{\perp}+a_{3} \Delta \varepsilon^{\prime}
\end{array}\right]
$$

$\vec{E}_{\text {measured }}$ $\varepsilon=\left[\begin{array}{ccc}\varepsilon_{x} & 0 & 0 \\ 0 & \varepsilon_{y} & 0 \\ 0 & 0 & \varepsilon_{z}\end{array}\right]$

This equation relates the bulk (macroscopic) birefringence $\Delta \varepsilon$ to the microscopic (crystal) birefringence $\Delta \varepsilon^{\prime}$

Birefringence in ice

- In radargrams, periodic patterns appear as a result of birefringence
- Radar must be angled off-parallel and offperpendicular to fabric axes!

Polarimetric backscatter model

Node azimuth separation dependent on anisotropic scattering (r)

Polarimetric radar sounding

Application to radar sounding using linearly-polarised antennas can detect azimuthal ($x-y$) fabric asymmetry

$$
\begin{aligned}
S(\theta) & =\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
s_{h h} & s_{v h} \\
s_{h v} & s_{v v}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
s_{h h} \cos ^{2} \theta+\left(s_{v h}+s_{h v}\right) \sin \theta \cos \theta+s_{v v} \sin ^{2} \theta & s_{h v} \cos ^{2} \theta+\left(s_{v v}-s_{h h}\right) \sin \theta \cos \theta-s_{v h} \sin ^{2} \theta \\
s_{v h} \cos ^{2} \theta+\left(s_{v v}-s_{h h}\right) \sin \theta \cos \theta-s_{h v} \sin ^{2} \theta & s_{v v} \cos ^{2} \theta-\left(s_{v h}+s_{h v}\right) \sin \theta \cos \theta+s_{h h} \sin ^{2} \theta
\end{array}\right]
\end{aligned}
$$

Quad-pol setup

Polarimetric coherence

Application of polarimetric coherence to the effective medium model quantifies the azimuthal fabric asymmetry

$$
\begin{aligned}
c_{h h v v}^{\star} & =\frac{\sum_{i=1}^{N} s_{h h, i} \cdot s_{v v, i}^{*}}{\sqrt{\sum_{i=1}^{N}\left|s_{h h, i}\right|^{2}} \sqrt{\sum_{i=1}^{N}\left|s_{v v, i}\right|^{2}}} \\
\phi_{h h v v}^{\star} & =\arg \left(c_{h h v v}\right) \\
a_{2}-a_{1} & =\frac{c}{4 \pi f_{c}} \frac{2 \sqrt{\bar{\varepsilon}}}{f(\nu) \Delta \varepsilon^{\prime}}\left|\frac{d \phi_{h h v v}}{d z}\right|
\end{aligned}
$$

Application: Thwaites Glacier

Application: Thwaites Glacier

Application: Rutford Ice Stream

pRES observations approaching the shear margin of Rutford Ice Stream reveals increasing fabric asymmetry and axis rotation

(a) Girdle orientation in relation to ice flow and compression axis

(b) Girdle strength in relation to compressive strain rate

Application: Rutford Ice Stream

Radar fabric measurements can be used to parameterise an anisotropic flow law via the fluidity tensor ψ

$$
\left(\begin{array}{c}
D_{11} \\
D_{22} \\
D_{33} \\
D_{12} \\
D_{13} \\
D_{23}
\end{array}\right)=\psi_{0}\left(\begin{array}{cccccc}
\psi_{1111} & \psi_{1122} & \psi_{1133} & 0 & 0 & 0 \\
\psi_{1122} & \psi_{2222} & \psi_{2233} & 0 & 0 & 0 \\
\psi_{1133} & \psi_{2233} & \psi_{3333} & 0 & 0 & 0 \\
0 & 0 & 0 & \psi_{1212} & 0 & 0 \\
0 & 0 & 0 & 0 & \psi_{1313} & 0 \\
0 & 0 & 0 & 0 & 0 & \psi_{2323}
\end{array}\right)\left(\begin{array}{c}
\bar{S}_{11} \\
\bar{S}_{22} \\
\bar{S}_{33} \\
\bar{S}_{12} \\
\bar{S}_{13} \\
\bar{S}_{23}
\end{array}\right)
$$

Anisotropy of ice rheology for a vertical girdle: Transect A, U1

Anisotropy of ice rheology for a horizontal pole: Transect A, U1

Application: ARA Neutrino Detection

Because Cherenkov radiation occurs within applicable radar frequencies ($\sim 150-800 \mathrm{MHz}$), the effective medium model can be repurposed to model oblique propagation delay and aid neutrino energy reconstruction

Proposals for future work at South Pole

- Quantifying depth-space variations in fabric strength and orientation across IceCube domain
- Generalising Jordan et al. (2020)'s model framework for neutrino detection for offaxis alignment
- Bistatic radar surveys to resolve a_{3}
- Anisotropic flow parameterisation and modelling of South Pole domain

