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What is ice fabric? 

The	c-axis	of	a		
single	ice	crystal	

Ice	fabric:	c-axes	of		
many	ice	crystals	

x3	

x1	

x2	

•  Ice fabric represents the collective 
orientations of ice crystals 

•  Represented by a 2nd order orientation 
tensor with eigenvalues a along 
eigenvectors x: 

 a1 + a2 + a3 = 1 

 a1 < a2 < a3 (radar, seismics) 

 a1 > a2 > a3 (ice cores)   



Fabric anisotropy 

x2	

x1	

x3	

				
x2	

x3	

x1	

x2	

x1	

x3	
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•  Fabric represents the deformation history of glacier ice 
•  “Complex history à complex fabric” 

Isotropic	(near-random)	
a1	≈	a2	≈	a3	≈	1/3	

Near-surface	firn/ice	
Uniform	deformation	

Vertical	girdle	
a1	<<	a2	≈	a3	

Centre	of	glacier	
Uniaxial	compression,	
longitudinal	extension	

Vertical	cluster	
a1	≈	a2	<<	a3	
Near-bed	ice	

Planar	simple	shear	

Horizontal	cluster	
a1	≈	a2	<<	a3	

Glacier	shear	margin	
Lateral	simple	shear	

*	Shown	are	general	examples	(deviations	occur!)	

Further	reading	

Azuma	&	Higashi	(1985)	AoG	
Alley	(1988)	Nature	



Birefringence in ice 

=

⎡

⎣

ε⊥ + a1∆ε
′ 0 0

0 ε⊥ + a2∆ε
′ 0

0 0 ε⊥ + a3∆ε
′

⎤

⎦

ε =

⎡

⎣

εx 0 0

0 εy 0

0 0 εz

⎤

⎦

∆ε = εy − εx = (a2 − a1)∆ε
′

Radar is able to detect the horizontal components 
of fabric anisotropy due to the birefringence of ice 
as an effective medium 

This	equation	relates	the	bulk	
(macroscopic)	birefringence	Δε	to	the	
microscopic	(crystal)	birefringence	Δε’	

Further	reading	

Hargreaves	(1978)	JGlac	
Doake	(1981)	GJI	

Fujita	et	al.	(2006)	JGlac	
Young	et	al.	(in	review)	JGR	



Birefringence  
in ice 
•  In radargrams, 

periodic patterns 
appear as a result 
of birefringence 

•  Radar must be 
angled off-parallel 
and off-
perpendicular to 
fabric axes!  

Further	reading:	Young	et	al.	(in	review)	JGR	
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Polarimetric backscatter model 

the waves is a function of the radar antenna footprint through depth. The birefringence of an individual ice crystal and its COF

are related to the bulk dielectric properties of anisotropic polar ice (Appendix of Fujita et al., 2006):

"(z) =

2

664

"? +�"E1 0 0

0 "? +�"E2 0

0 0 "? +�"E3

3

775 (1)

where "(z) is the bulk birefringence tensor, �"= "k � "? is the crystal (microscopic) birefringence with "k and "? the100

dielectric permittivities for polarisation planes parallel and perpendicular to the crystallographic (c)-axis. Across the spectrum

of ice-penetrating radar frequencies and ice temperatures, "k and "? vary within a narrow band of 3.16–3.18 and 3.12–3.14

respectively (Fujita et al., 2000). In this study, following Jordan et al. (2020b), we assign "k = 3.169 and "? = 3.134, with

�"= 0.035.

The tensor eigenvalue E describes the relative concentration of c-axes aligned with each principal coordinate eigenvector,105

with E1 +E2 +E3 = 1 and E3 >E2 >E1 following conventional radar notation, which is opposite to conventions normally

in ice core studies (E1 >E2 >E3). The relative proportions of E can be used to describe different fabric patterns, including

(i) random (isotropic) fabrics (E1 ⇡ E2 ⇡ E3 ⇡ 1/3); (ii) cluster fabrics (E1 ⇡ E2 ⌧ E3); and (iii) vertical girdle fabrics

(E1 ⌧ E2 ⇡ E3). When ice deforms solely by vertical uniaxial compression, such as at the centre of an ice dome, the c-axes

rotates towards the vertical and forms a cluster fabric; where lateral tension exists from flow extension, such as at an ice110

divide, the c-axes orient in a vertical girdle distribution orthogonal to the direction of strain extension (Alley, 1988). Following

previous studies (Fujita et al., 2006; Drews et al., 2012; Brisbourne et al., 2019; Jordan et al., 2019, 2020b), we assume that

the E3 eigenvector is aligned in the vertical direction, and the E1 and E2 eigenvectors are parallel to the horizontal plane.

The direction of the greatest horizontal c-axis concentration reflects the orientation of horizontal strain extension (Brisbourne

et al., 2019; Matsuoka et al., 2012) and corresponds with E2 in our notation (Jordan et al., 2020b). The E1 eigenvector is115

orthogonally oriented to both E2 and E3, and represents the symmetry axis, which is normal to the girdle plane (Brisbourne

et al., 2019).

In the horizontal plane, Equation 1 simplifies to "(z) =�"(E2 �E1), where the horizontal eigenvalue difference E2 �E1

quantifies the horizontal asymmetry of the ice fabric (i.e. strength of the vertical girdle). Equation 1 directly relates both

the macro- and microscopic ice fabric anisotropy to dielectric anisotropy, which serves as the basis for the radar processing120

methods that follow.

3.2 Modelling radio-wave signal propagation

The matrix-based formulation calculates the backscatter that is transmitted, reflected, and received at the antennas for each

depth step and azimuthal orientation:

S (✓) =


exp(jk0z)

4⇡z

�2
·
"
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5

free-space		
propagation	

received	(upward)	propagation	 transmitted	(downward)		
propagation	

boundary	scattering	

Node	depth	wavelength	(ϕ)	dependent	on:		
•  frequency	(fc),	
•  bulk	birefringence	(Δε(z))	
•  crystal	birefringence	(through	ε)	

Node	azimuth	separation	dependent	on	anisotropic	scattering	(r)	
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[
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]
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of received power (Pr) (Equations 9-12 in Fujita et al., 2006) to the radar received power269

equation (Equation 2) as a combination of anisotropic scattering (R) and birefringence270

(B), the former as a scalar parameter that modulates the inequality in the scattering ma-271

trix (Equation 8 in Fujita et al., 2006) and the latter as ↵ (Equation 1). Specifically, the272

polarimetric phase shift through depth is related to B and ↵ by (Equation 12 in Jordan273

et al., 2019):274

� =
4⇡fc
c

Z z

z0

�" (z)

2
p
"̄

dz (4)275

Equation (4) reveals the two-way phase shift � to be proportional to the central276

radar frequency fc and the bulk (macroscopic) birefringence �" between depths z and277

z0 (where z0 is an initial depth). Additionally, "̄ represents the mean (polarization-averaged)278

dielectric permittivity of ice, and c is the speed of light in vacuum. The theoretically-279

predicted depth-averaged distance between successive birefringent minima over phase cy-280

cles of 2⇡ radians can then be determined through Equations (1) and (4) within the po-281

larimetric backscatter model as a function of horizontal fabric asymmetry (↵). Because282

there also exists an inverse relationship between this periodicity and the radar center fre-283

quency (fc) (Figure S2b), higher frequency radars are better suited to detect weaker ice284

fabric anisotropy than deep-penetrating radars (Figure 6 in Fujita et al., 2006).285

Using the same polarimetric backscatter model, Fujita et al. (2006) (their Figure286

5) determined that, for co-polarized antennas, extinction of the received signal occurs287

when the ice optic axis is aligned either parallel or perpendicular to the antenna polar-288

ization plane, and that periodic local power minima located o↵-axis are present symmet-289

ric about the antenna’s polarization plane (referred to in their paper as “co-polari[z]ation290

nodes”). These results are replicated in Figure 4a-c with the antenna polarization plane291

centered at ✓ = 0° and using a radar central frequency of 750MHz, which corresponds292

to the central frequency of the Accumulation-C radar. Additionally, Figure 4 reveals that293

the amount of prescribed anisotropic reflectivity perturbs the amplitude of theoretical294

birefringence loss, as well as on the azimuth of the ice optic axis relative to the antenna295

array polarization plane (the relative azimuth). The detectability of birefringence-induced296

power minima in our study are inherently dependent on this specific relationship. In the297

case where the ice medium reflects isotropically (Figure 4a), birefringence-induced power298

loss will be most pronounced when the ice optic axis is at 45° from the principal axes299

–15–

(d)

β  ε(z)

Figure 3. Modelled WDC (a) co-polarised power anomaly, (b) co-polarised phase difference, and (c) quad-polarised (hhvv) phase angle,

corresponding to Fig. 2b, d, and e respectively. (d) Model input parameters for anisotropy (�), and birefringence ("(z)) through depth,

the former estimated through 2-D optimisation from Fig. 2b, and the latter using eigenvalues from the WDC that specify the bulk COF

(Fitzpatrick et al., 2014). Value ranges for � (white to dark green) and "(z) (white to dark purple) are [1 5] and
⇥
0 1.5⇥ 10�2

⇤
respectively.

The identified symmetry axis orientation does not azimuthally migrate through the observed depth range to 1500 m, equivalent

to a depth age of 7400 years (Sigl et al., 2016). Though we similarly observe no azimuthal migration beyond 1500 m, we do

not extend our findings further due to the limited depth samples with sufficient SNR available within this range. Our estimate

of the principal axis aligns exactly with the nearest strain configuration (~5 km southwest) as estimated by Matsuoka et al.

(2012), and is +14
� from the direction of flow as estimated by Conway and Rasmussen (2009) (Fig 2f). We note that there220

may be additional unquantified azimuthal error from human inaccuracy in establishing the orientation of the measurement axis

during data collection.

The backscatter and phase patterns in the co-polarised measurements, as well as in the hhvv coherence phase (�hhvv), all

show variation with depth, which indicate changes in either or a combination of birefringence and anisotropy. To better under-

stand what drives these changes, we modelled the azimuth and phase dependence of these three measurements (Fig. 3) through225

the matrix-based backscatter model (Eq. 2), which predicts the combined polarimetric effect of birefringent propagation and

anisotropic scattering at each depth and azimuth step (1 m and 1
� in the model). The birefringence in the models was estimated

through Eq. 1 by directly using eigenvalue estimates from the WAIS Divide Deep Ice Core (WDC; Fitzpatrick et al., 2014) to

calculate the horizontal asymmetry E2�E1, and linearly interpolating between each defined fabric measurement depth. The

10
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Preprint. Discussion started: 28 September 2020
c� Author(s) 2020. CC BY 4.0 License.

Further	reading	

Fujita	et	al.	(2006)	JGlac	
Young	et	al.	(in	review)	JGR	



Polarimetric radar sounding 
Using the four processed quad-polarised complex amplitudes, the 2⇥ 2 integrated scattering matrix S (Eq. 2) in the frame

of reference can be constructed as (Doake et al., 2003):

S =

2

4shh svh

shv svv

3

5 (3)160

Equation 3 is often referred to as the Sinclair matrix. From here, we can reconstruct the ApRES received signal S from any

transmission angle through the application of an azimuthal (rotational) shift of principal axes at the transmitting and receiving

antennas (e.g., Mott, 2006):

S (✓) =

2

4 cos✓ sin✓

�sin✓ cos✓

3

5

2

4shh svh

shv svv

3

5

2

4cos✓ �sin✓

sin✓ cos✓

3

5

=

2

4shh cos
2 ✓+(svh + shv)sin✓ cos✓+ svv sin

2 ✓ shv cos2 ✓+(svv � shh)sin✓ cos✓� svh sin
2 ✓

svh cos2 ✓+(svv � shh)sin✓ cos✓� shv sin
2 ✓ svv cos2 ✓� (svh + shv)sin✓ cos✓+ shh sin

2 ✓

3

5 (4)165

Note that in Eq. 4 the cross-polarised measurements obtained from the ApRES are geometrically congruent by the Lorentz

Reciprocity Theorem (i.e. svh = shv) and therefore the two measurements should be identical, with any deviations being the

result of performance variations between the transmitting and receiving antennas and/or error in orienting the antennas along

the acquisition geometry axes (Doake et al., 2003).

Because the complex amplitudes retrieved from the ApRES (Eq. 4) are phasors representing the radar return signal, the170

phase of the signal at a given depth is simply the argument of the complex number. To avoid the typical problems of working

with phase—that is, employing phase unwrapping methods for sampled data within [0,2⇡]—we calculate the phase difference

with respect to azimuth:

��✓,z = arg

⇣
s✓+�✓/2,z · s⇤✓��✓/2,z

⌘
(5)

where the asterisk represents the complex conjugate of its respective phasor.175

The shift in phase also results in the modulation of received power as a function of azimuth. This can be visualised by

calculating the power anomaly from the resulting multipolarisation data (e.g. Eq. 7 in Matsuoka et al., 2003).

The polarimetric coherence and its corresponding phase is computed over a local window via the discrete approximation

(Eq. 1 in Dall, 2010):

c?hhvv =

PN
i=1 shh,i · s⇤vv,iqPN

i=1 |shh,i|
2
qPN

i=1 |svv,i|
2

(6a)180

�?
hhvv = arg(chhvv) (6b)

where the superscript stars in Eq. 6 account for the use of the deramped phase stored by the ApRES rather than the original

received signal phase (hereafter we do not notate this explicitly) (Jordan et al., 2020b). From Eq. 6b, we can then estimate the

7

Application to radar sounding using 
linearly-polarised antennas can detect 
azimuthal (x-y) fabric asymmetry 

v|v	

v|h	

h|h	

h|v	

WAIS	Divide	orientation	

(a)	 (b)	8.00	m	

N	

Amundsen Sea Ross Sea|
Tx	 Rx	

ApRES	

Figure 1. (a) Four orthogonal combinations of antenna orientations used for polarimetry experiments. Antennas (Tx = transmitting, Rx =

receiving) were positioned 8.00 m apart and rotated 90� in a vertical (v) or horizontal (h) orientation. The antenna axis was oriented parallel

with the WAIS Divide orientation. (b) Map of local surface topography (white contours, REMA, Howat et al., 2019) and bed topography

(background colour, MEaSUREs BedMachine Antarctica, Morlighem et al., 2020) in the WAIS Divide area, as well as GPS-measured surface

velocities (black lines, Conway and Rasmussen, 2009) and strain configurations (blue and red arrows, Matsuoka et al., 2012). The locations

of the ApRES polarimetry experiment (red dot) and the WAIS Divide Deep Ice Core (WDC, cyan star) are separated by ~5 km. The WAIS

Divide is delineated as a thick dotted white line, with ice flowing northwards towards the Amundsen Sea and southwards towards the Ross

Sea. Location of (b) is shown as a red box in the map inset.

Divide. We then calculate the fabric asymmetry using the polarimetric coherence methods outlined in Jordan et al. (2019,

2020b).

3.1 Electromagnetic propagation and COF representation in anisotropic ice

In an anisotropic medium such as polar ice, birefringence and anisotropic scattering are two related, but separate mechanisms

that affect the polarisation and azimuthal variation in power of radar returns (Brisbourne et al., 2019). For downward-looking90

ice-penetrating radar, birefringence occurs as a result of a phase shift between two orthogonally-oriented waves travelling

between the surface and the interior of an ice mass, the phase shift manifested in the radar return as characteristic variations

with azimuth and depth in power and phase. As a result, birefringence reflects the bulk COF as and is azimuthally asymmetric

in the direction of radio wave propagation. On the other hand, anisotropic scattering arises as a consequence of rapid but

microscopic continuous depth variations in the orientation of the bulk COF. Therefore, the polarimetric response of radio95

waves is determined by the bulk (macroscopic) birefringence of the COF (Hargreaves, 1978), of which the area illuminated by

4
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Quad-pol	setup	

Azimuthal	rotation	setup	

Figure 2. Polarimetric power and coherence measured using ApRES at WAIS Divide. (a) Mean (polarisation-averaged) power return. (b) Co-

polarised and (c) cross-polarised power anomaly. (d) Co-polarised phase difference. (e) Quad-polarised (hhvv) phase angle. (f) Orientation

of the principal axis (dark brown) and associated standard error (yellow bounds) as determined from the E2 eigenvector in (c). Depths

with insufficient SNR (primarily > 1500 m) are greyed out. Bright green dots represent azimuthal minima at each range bin after zero-

padding (0.27 m), The dark green line is the best estimate of the symmetry axis, calculated using a Gaussian-weighted moving average of

the azimuthal minima. The depth-dependent gradient along the symmetry axis represents E2�E1, the fabric asymmetry of the measured

vertical ice column. Map shown in (f) is an inset of Fig. 1b.

9
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(d)

β  ε(z)

Figure 3. Modelled WDC (a) co-polarised power anomaly, (b) co-polarised phase difference, and (c) quad-polarised (hhvv) phase angle,

corresponding to Fig. 2b, d, and e respectively. (d) Model input parameters for anisotropy (�), and birefringence ("(z)) through depth,

the former estimated through 2-D optimisation from Fig. 2b, and the latter using eigenvalues from the WDC that specify the bulk COF

(Fitzpatrick et al., 2014). Value ranges for � (white to dark green) and "(z) (white to dark purple) are [1 5] and
⇥
0 1.5⇥ 10�2

⇤
respectively.

The identified symmetry axis orientation does not azimuthally migrate through the observed depth range to 1500 m, equivalent

to a depth age of 7400 years (Sigl et al., 2016). Though we similarly observe no azimuthal migration beyond 1500 m, we do

not extend our findings further due to the limited depth samples with sufficient SNR available within this range. Our estimate

of the principal axis aligns exactly with the nearest strain configuration (~5 km southwest) as estimated by Matsuoka et al.

(2012), and is +14
� from the direction of flow as estimated by Conway and Rasmussen (2009) (Fig 2f). We note that there220

may be additional unquantified azimuthal error from human inaccuracy in establishing the orientation of the measurement axis

during data collection.

The backscatter and phase patterns in the co-polarised measurements, as well as in the hhvv coherence phase (�hhvv), all

show variation with depth, which indicate changes in either or a combination of birefringence and anisotropy. To better under-

stand what drives these changes, we modelled the azimuth and phase dependence of these three measurements (Fig. 3) through225

the matrix-based backscatter model (Eq. 2), which predicts the combined polarimetric effect of birefringent propagation and

anisotropic scattering at each depth and azimuth step (1 m and 1
� in the model). The birefringence in the models was estimated

through Eq. 1 by directly using eigenvalue estimates from the WAIS Divide Deep Ice Core (WDC; Fitzpatrick et al., 2014) to

calculate the horizontal asymmetry E2�E1, and linearly interpolating between each defined fabric measurement depth. The

10
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Modelled	 Measured	

Further	reading	

Brisbourne	et	al.	(2019)	JGR	
Young	et	al.	(2020)	TCD	



Polarimetric coherence  

Using the four processed quad-polarised complex amplitudes, the 2⇥ 2 integrated scattering matrix S (Eq. 2) in the frame

of reference can be constructed as (Doake et al., 2003):

S =

2

4shh svh

shv svv

3

5 (3)160

Equation 3 is often referred to as the Sinclair matrix. From here, we can reconstruct the ApRES received signal S from any

transmission angle through the application of an azimuthal (rotational) shift of principal axes at the transmitting and receiving

antennas (e.g., Mott, 2006):

S (✓) =

2

4 cos✓ sin✓

�sin✓ cos✓

3

5

2

4shh svh

shv svv

3

5

2

4cos✓ �sin✓

sin✓ cos✓

3

5

=

2

4shh cos
2 ✓+(svh + shv)sin✓ cos✓+ svv sin

2 ✓ shv cos2 ✓+(svv � shh)sin✓ cos✓� svh sin
2 ✓

svh cos2 ✓+(svv � shh)sin✓ cos✓� shv sin
2 ✓ svv cos2 ✓� (svh + shv)sin✓ cos✓+ shh sin

2 ✓

3

5 (4)165

Note that in Eq. 4 the cross-polarised measurements obtained from the ApRES are geometrically congruent by the Lorentz

Reciprocity Theorem (i.e. svh = shv) and therefore the two measurements should be identical, with any deviations being the

result of performance variations between the transmitting and receiving antennas and/or error in orienting the antennas along

the acquisition geometry axes (Doake et al., 2003).

Because the complex amplitudes retrieved from the ApRES (Eq. 4) are phasors representing the radar return signal, the170

phase of the signal at a given depth is simply the argument of the complex number. To avoid the typical problems of working

with phase—that is, employing phase unwrapping methods for sampled data within [0,2⇡]—we calculate the phase difference

with respect to azimuth:

��✓,z = arg

⇣
s✓+�✓/2,z · s⇤✓��✓/2,z

⌘
(5)

where the asterisk represents the complex conjugate of its respective phasor.175

The shift in phase also results in the modulation of received power as a function of azimuth. This can be visualised by

calculating the power anomaly from the resulting multipolarisation data (e.g. Eq. 7 in Matsuoka et al., 2003).

The polarimetric coherence and its corresponding phase is computed over a local window via the discrete approximation

(Eq. 1 in Dall, 2010):

c?hhvv =

PN
i=1 shh,i · s⇤vv,iqPN

i=1 |shh,i|
2
qPN

i=1 |svv,i|
2

(6a)180

�?
hhvv = arg(chhvv) (6b)

where the superscript stars in Eq. 6 account for the use of the deramped phase stored by the ApRES rather than the original

received signal phase (hereafter we do not notate this explicitly) (Jordan et al., 2020b). From Eq. 6b, we can then estimate the

7

Application of polarimetric coherence to the 
effective medium model quantifies the 
azimuthal fabric asymmetry 

(d)

β  ε(z)

Figure 3. Modelled WDC (a) co-polarised power anomaly, (b) co-polarised phase difference, and (c) quad-polarised (hhvv) phase angle,

corresponding to Fig. 2b, d, and e respectively. (d) Model input parameters for anisotropy (�), and birefringence ("(z)) through depth,

the former estimated through 2-D optimisation from Fig. 2b, and the latter using eigenvalues from the WDC that specify the bulk COF

(Fitzpatrick et al., 2014). Value ranges for � (white to dark green) and "(z) (white to dark purple) are [1 5] and
⇥
0 1.5⇥ 10�2

⇤
respectively.

The identified symmetry axis orientation does not azimuthally migrate through the observed depth range to 1500 m, equivalent

to a depth age of 7400 years (Sigl et al., 2016). Though we similarly observe no azimuthal migration beyond 1500 m, we do

not extend our findings further due to the limited depth samples with sufficient SNR available within this range. Our estimate

of the principal axis aligns exactly with the nearest strain configuration (~5 km southwest) as estimated by Matsuoka et al.

(2012), and is +14
� from the direction of flow as estimated by Conway and Rasmussen (2009) (Fig 2f). We note that there220

may be additional unquantified azimuthal error from human inaccuracy in establishing the orientation of the measurement axis

during data collection.

The backscatter and phase patterns in the co-polarised measurements, as well as in the hhvv coherence phase (�hhvv), all

show variation with depth, which indicate changes in either or a combination of birefringence and anisotropy. To better under-

stand what drives these changes, we modelled the azimuth and phase dependence of these three measurements (Fig. 3) through225

the matrix-based backscatter model (Eq. 2), which predicts the combined polarimetric effect of birefringent propagation and

anisotropic scattering at each depth and azimuth step (1 m and 1
� in the model). The birefringence in the models was estimated

through Eq. 1 by directly using eigenvalue estimates from the WAIS Divide Deep Ice Core (WDC; Fitzpatrick et al., 2014) to

calculate the horizontal asymmetry E2�E1, and linearly interpolating between each defined fabric measurement depth. The

10
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Figure 2. Polarimetric power and coherence measured using ApRES at WAIS Divide. (a) Mean (polarisation-averaged) power return. (b) Co-

polarised and (c) cross-polarised power anomaly. (d) Co-polarised phase difference. (e) Quad-polarised (hhvv) phase angle. (f) Orientation

of the principal axis (dark brown) and associated standard error (yellow bounds) as determined from the E2 eigenvector in (c). Depths

with insufficient SNR (primarily > 1500 m) are greyed out. Bright green dots represent azimuthal minima at each range bin after zero-

padding (0.27 m), The dark green line is the best estimate of the symmetry axis, calculated using a Gaussian-weighted moving average of

the azimuthal minima. The depth-dependent gradient along the symmetry axis represents E2�E1, the fabric asymmetry of the measured

vertical ice column. Map shown in (f) is an inset of Fig. 1b.

9

https://doi.org/10.5194/tc-2020-264
Preprint. Discussion started: 28 September 2020
c� Author(s) 2020. CC BY 4.0 License.

(d)

β  ε(z)

Figure 3. Modelled WDC (a) co-polarised power anomaly, (b) co-polarised phase difference, and (c) quad-polarised (hhvv) phase angle,

corresponding to Fig. 2b, d, and e respectively. (d) Model input parameters for anisotropy (�), and birefringence ("(z)) through depth,

the former estimated through 2-D optimisation from Fig. 2b, and the latter using eigenvalues from the WDC that specify the bulk COF

(Fitzpatrick et al., 2014). Value ranges for � (white to dark green) and "(z) (white to dark purple) are [1 5] and
⇥
0 1.5⇥ 10�2

⇤
respectively.

The identified symmetry axis orientation does not azimuthally migrate through the observed depth range to 1500 m, equivalent

to a depth age of 7400 years (Sigl et al., 2016). Though we similarly observe no azimuthal migration beyond 1500 m, we do

not extend our findings further due to the limited depth samples with sufficient SNR available within this range. Our estimate

of the principal axis aligns exactly with the nearest strain configuration (~5 km southwest) as estimated by Matsuoka et al.

(2012), and is +14
� from the direction of flow as estimated by Conway and Rasmussen (2009) (Fig 2f). We note that there220

may be additional unquantified azimuthal error from human inaccuracy in establishing the orientation of the measurement axis

during data collection.

The backscatter and phase patterns in the co-polarised measurements, as well as in the hhvv coherence phase (�hhvv), all

show variation with depth, which indicate changes in either or a combination of birefringence and anisotropy. To better under-

stand what drives these changes, we modelled the azimuth and phase dependence of these three measurements (Fig. 3) through225

the matrix-based backscatter model (Eq. 2), which predicts the combined polarimetric effect of birefringent propagation and

anisotropic scattering at each depth and azimuth step (1 m and 1
� in the model). The birefringence in the models was estimated

through Eq. 1 by directly using eigenvalue estimates from the WAIS Divide Deep Ice Core (WDC; Fitzpatrick et al., 2014) to

calculate the horizontal asymmetry E2�E1, and linearly interpolating between each defined fabric measurement depth. The
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towards a vertical plane transverse to flow,but with stronger
concentration near the vertical than near the horizontal in
that plane,and with increasing vertical concentration with
increasing depth. Grain subdivision by polygonization
causes only small changes in c-axis orientation, and, as
noted below,nucleation and growth of new grains with c-
axes at large angles to their neighbors does not become
dominant until much deeper (see also Budd and Jacka,
1989;Alley,1992). Lacking independent evidence of the
orientation of core sections,this physical understanding has
been applied;after rotating all sections to place the core axis
in the center of the Schmidt plot,those sections with a clear
symmetry plane were rotated so that these planes are
parallel,making comparisons easier (Fig. 19).

7.3. Eigenvalues
Eigenvalues provide a means by which the organization of
the fabric can be described using three scalars. The normal-
ized eigenvalues have the property that S1 + S2 + S3 = 1 and
that S1 > S2 > S3. Ideally,a totally uniform fabric would show
S1⇡ S2⇡ S3⇡1/3,a fabric with all c-axes arrayed uniformly
in a plane would have S1 = S2 = 1/2,S3 = 0,and a fabric with
all c-axes pointing in the same direction would have S1 = 1,
S2 = S3 = 0. In reality, these values are never attained.
Previous workers have used eigenvalue methods to describe
the fabric in a quantitative manner (e.g. DiPrinzio and others,
2005;Kennedy and others,2013). Eigenvalues are limited in
that they do not necessarily differentiate some fabric shapes
such as between multiple clusters and a tight girdle.

Fig. 19. Representative selection of horizontal Schmidt plots showing the evolution of fabric with depth. Azimuth of the data has been
rotated so that all plots have the same orientation,which is assumed to be perpendicular to the direction of the extensional ice flow. Sample
depths (m) are indicated above each plot. Number of points (n) successfully measured by the c-axis-fabric analyzer in each sample is shown
below each plot.
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that plane,and with increasing vertical concentration with
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causes only small changes in c-axis orientation, and, as
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140 m
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Figure 4. Modelled E2�E1 values derived from the ApRES experiment (orange squares, with associated standard errors) and from the

WAIS Divide deep ice core (black dots, Fitzpatrick et al., 2014). Smoothing curves were generated through a low pass filter on each dataset

are shown in their respective colour scheme. A representative selection (black stars) of horizontal Schmidt plots from which the fabric

eigenvalues for the WAIS Divide deep ice core were derived from are displayed to the right of the graph (Fitzpatrick et al., 2014).

between 100 and 400 m, where a small decrease in fabric asymmetry with depth can be observed in the uppermost 100 m of the265

ice column, where upon reaching minimum values at 200 m, rebound and show a linear increase beyond this depth. From 1200

to 1500 m, ApRES measurements show a marked increase in variability that, although centred around corresponding depth

values in the WDC, varied between 0.04 to 0.42. We similarly observe a sevenfold jump increase in the associated standard

error, ranging from values averaging 0.006 at depths of 200–1200 m to 0.04 within the depth range of 1200–1500 m. We do

not calculate E2�E1 from the ApRES record beyond 1500 m due to low SNR in this range (Fig. 2a).270
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Examples of synthetic c-axis distributions 

Flow 
direction

A1
(0 km)

A6
(7.5 km)

(a)

(b)

Pmin Pmax

(c)

A1 A6 A9

A9
(8.3 km)

a1≈0.21,
a2=a3 ≈ 0.40

a1≈0, a2 ≈ 0.23, 
a3 ≈ 0.77

a1≈0, a2 ≈ 0.19, 
a3 ≈ 0.81

a1≈0, a2 ≈ 0.33, 
a3 ≈ 0.67

a1≈0.18,
a2=a3 ≈ 0.41

a1≈0.11,
a2=a3 ≈ 0.45

Figure 10. Spatial variation of ice fabric for unit U1 in Transect A. (a) Girdle orientation and

horizontal compression axis relative to the ice-flow direction. (b) Girdle strength and principal

compression magnitude. (c) Synthetic c-axis distributions for three measurement sites for the

upper and lower pole bounds. The fabric estimates in U1 are depth-averaged over 40 < z < 80 m.

The visualization of the results assume a vertical girdle fabric (x3 vertical). For a horizontal pole

fabric (x1 vertical), G is replaced by P
2 in (b) and (✓G � ✓x) is replaced by (✓P � ✓x) in (a).
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Application: Rutford Ice Stream 
pRES observations approaching the shear margin of Rutford Ice 
Stream reveals increasing fabric asymmetry and axis rotation 
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(a) (b)

Anisotropy of ice rheology for a vertical girdle: Transect A, U1

(c) (d)

Anisotropy of ice rheology for a horizontal pole: Transect A, U1

Center Margin

Figure 12. Bounds on the relative anisotropy of ice rheology for Transect A. Top row: (a)

 xxxx/ yyyy, (b)  xxxx/ xyxy assuming a non-ideal vertical girdle (x3 vertical). Bottom row: (c)

 yyyy/ xxxx, (d)  xyxy/ xxxx assuming a non-ideal horizontal pole (x1 vertical). The shaded

regions correspond to values consistent with the pole/girdle bounds. The fluidity ratios are de-

fined di↵erently for the vertical girdle and the horizontal pole models, so as to emphasize which

deformation mode is enhanced.

2017). Consequently, the upper estimates for linear anisotropy in Figure 12 and 13608

change from ⇡ 1.4-1.8 to 2.7-5.8 for non-linear anisotropy. Non-linearity also results in609

the di↵erence between the upper and lower pole bounds increasing (the shaded regions610

in Figure 12 and 13).611

612
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via the matrix equation
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, (5)

where  is the fourth-order fluidity tensor (inverse of the fourth-order viscosity ten-395

sor) and  0 is a constant. The elements of  represent the relative softness of each396

deformation mode with respect to a random/isotropic fabric, whereby values greater397

than one indicate anisotropic ice that is softer than isotropic ice to an applied stress398

component.399

In the general case,  is a function of �, �, the second-order orientation tensor400

a and a fourth-order fabric orientation tensor, a4 (see Martin et al. (2009) equation401

(C1)). We cannot, however, uniquely measure the elements of a4 with radar. Following402

(Gillet-chaulet et al., 2005) we use a polynomial expansion to express a
4 in terms of403

the eigenvalues a1, a2 and a3. We then use the GP decomposition outlined in Section404

3.3 to model the elements of  as a function of the two degrees of freedom G and P .405

As described in Section 3.2, nadir radar-sounding may be used to estimate either406

G (vertical girdle strength where x3 is assumed vertical) or P (horizontal pole strength407

where x1 is assumed vertical). The radar can therefore constrain whatever elements of408

the fluidity tensor are assumed to be horizontal. Under the girdle assumption  1111,409

 2222, and  1212 are the horizontal uniaxial and lateral shear elements. Under the410

pole assumption  2222,  3333, and  2323 are the horizontal uniaxial and lateral shear411

elements.412

A non-linear extension of equation (5) is considered by Martin et al. (2009) which413

mimics the n=3 power-law dependence of the commonly-used Glen’s flow-law (Glen,414

1954). Consequently, whilst we focus on a linear anisotropic rheology in this study,415

the radar measurements could also be used to parameterize a non-linear anisotropic416

flow law.417
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Radar fabric measurements can be used to parameterise 
an anisotropic flow law via the fluidity tensor ψ 
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Detection 

(greatest c-axis concentration in horizontal plane) is expected to be
approximately perpendicular to the horizontal extension direction
(shown to align with the ice flow direction in Section 2), with the x1
axis parallel (Wang and others, 2002; Fujita and others, 2006).
Using polarimetric radar sounding, this predicted behavior has
been verified at ice divides such as the NEEM ice core region in
northern Greenland (Dall, 2010; Jordan and others, 2019b).

4. Modeling oblique radio wave propagation

In the radio propagation model, we assume that the ice sheet can
be modeled as a stratified anisotropic medium. Each layer of the
ice sheet has thickness δzi which is determined from the vertical
spacing of the SPICE ice core eigenvalue data (∼20 m). The
dielectric properties of each layer are defined by the dielectric
tensor, Eqn (1), corresponding to the principal refractive indices,
Eqn (4). Lacking information about the azimuthal fabric orien-
tation, in the model description, we assume the ‘conventional’
fabric orientation described in Section 3.2, with the x3 axis ver-
tical, the x2 axis perpendicular to flow and the x1 axis parallel to
flow.

The radio propagation model is formulated for s- and
p-polarizations (electric field perpendicular and parallel to the
incidence plane, respectively). A schematic of the model

geometry assuming a straight-line trajectory is shown in
Figure 3(a). In each layer the s- and p-polarizations have different
refractive indices and follow separate trajectories following Snell’s
law shown in the schematic in Figure 3(b). The model considers
two bounding scenarios: (i) where the wave propagation vector is
assumed to be in the x2x3 plane (and therefore the trajectory is
‘perpendicular to flow’ when viewed from above), (ii) where the
wave propagation vector is assumed to be in the x1x3 plane
(and therefore the trajectory is ‘parallel to flow’ when viewed
from above). The principal refractive indices in relation to
model geometry are shown in Figure 3(c). For these restricted
propagation directions, the s- and p-polarizations propagate
along independent paths within the ice sheet and a double refrac-
tion/ray propagation model can be used.

This model approach is analogous to modeling oblique propa-
gation within birefringent optical reflectors (Weber and others,
2000; Orfanidis, 2016). Computationally, the model is set-up
with the source depth and the horizontal baseline fixed with sin
(θp,i) and sin(θs,i) as degrees of freedom to be solved for subject
to Snell’s law being satisfied in each layer. The model is equivalent
to Fermat’s least time principle being satisfied separately by each
polarization mode.

For propagation in the x2x3 plane, the s- and p-polarization
refractive indices of the ith layer are given by

ns,i = n1,i, (5)

np,i =
n3,in2,i!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

n22,i sin
2 (u p,i) + n23,i cos2 (u p,i)

√ , (6)

where the first subscript indicates the principal refractive index
component with θp,i the p-polarization propagation angle in
the ith layer (Matsuoka and others, 2009; Orfanidis, 2016).
For propagation in the x2x3 plane, the 1 and 2 subscripts are
interchanged between Eqns (6) and (5). The propagation angles
in each layer are derived from separate applications of Snell’s
law:

np,i sin (u p,i) = np,0 sin (u p,0) (7)

ns,i sin (us,i) = ns,0 sin (us,0), (8)

where θs,i is the s-polarization propagation angle in the ith layer
and the subscript 0 indicates the source layer. (In a multilayer
optical structure, it is sufficient to apply Snell’s law with respect
to the source layer, rather than adjacent layers.) Orfanidis
(2016) provides analytical expressions for θp,i in terms of the prin-
cipal refractive indices that were used in the model code. The
deviation between θs,i and θp,i from a straight-line trajectory
increases with the angle of incidence, with the highest angular off-
set in our simulation domain ∼ 0.2°.

The radio propagation model enables calculation of the s-p
signal arrival time delay for propagation in the planes of the prin-
cipal axes, which serve as bounding cases for the observed h-v
time delays at the receiver stations. In each layer of the ice
sheet, the radio path lengths are given by

dr p,i =
dzi

cos (u p,i)
(9)

drs,i =
dzi

cos (us,i)
, (10)

Fig. 3. (a) Geometry for oblique radio propagation model. The black circles indicate
that the s-polarization oscillates in the plane perpendicular to the radio trajectory.
(b) Schematic showing double refraction for s- and p-polarizations in adjacent layers
of the ice sheet (the differences in refraction angles are exaggerated). (c) Orientation
of principal refractive indices in relation to model geometry for the two bounding
cases considered where case 1 corresponds to propagation in the x2x3 plane and
case 2 corresponds to propagation in the x1x3 plane. The model assumes that the
E3 eigenvector is vertical, the E2 eigenvector is perpendicular to flow and the E1 eigen-
vector is parallel to flow.
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perpendicular (or near-perpendicular) to the ice-flow direction,
but not parallel. For the flow-perpendicular case, modeling and
measurements also demonstrate that the magnitude of the polar-
ization time delay increases with horizontal baseline and with
interaction range (refer to Allison and others (2019b) Figures
14 and 15 for measurements of the range relationship).

The radio propagation model was introduced as a bounding
case with the (assumed) flow-perpendicular and parallel trajector-
ies corresponding to minimum and maximum time delays. Figure
5(a) therefore places a bound on the minimum range that can be
estimated from a given measured polarization time delay (corre-
sponding to the case where the trajectory is precisely flow-
perpendicular, and the azimuthal fabric orientation is fixed with
ice depth). However, to be useful in practice (and even if the idea-
lized model assumptions about orientation were correct) the
model result in Figure 5(a) would need to be generalized for a
range of azimuthal trajectories. Figure 5(b) confirms that range
estimation is highly unlikely to be successful for trajectories near-
parallel to the ice-flow direction, with the modeled polarization
time delay typically comparable to an experimental error in
Table 1.

6.2. Comparison with previous measurements

Our modeled time delay at normal incidence (Fig. 4(a) and (c))
can be compared with previous measurements by Kravchenko
and others (2011). Specifically, as part of the RICE (Radio Ice
Cerenkov Experiment) particle astrophysics experiment,
Kravchenko and others (2011) measured a ∼50 ns time delay

for the bed echo from co-polarized antennas orientated perpen-
dicular and parallel to flow at the ice surface. We can estimate
the two-way time delay between the deepest SPICE fabric measure-
ment at 1740m and the ice bed at 2800m to be ∼18 ns (which fol-
lows from converting a one-way time delay of ∼16 ns at 1740 m in
Fig. 4(a) and (c). From this additional time delay, we can then esti-
mate the path-averaged birefringence in deeper ice (between 1740
and 2800m) to be 〈n2− n1〉∼ 0.0025 and the path-averaged hori-
zontal eigenvalue difference (girdle strength) to be 〈E2− E1〉∼
0.26. The estimate for 〈E2− E1〉 in deeper ice is therefore consistent
with a depth-transition between a vertical girdle and single max-
imum fabric, which is a common feature in other ice cores (e.g.
Montagnat and others (2014)).

6.3. Future development of the radio propagation model

In the development of an improved radio propagation model
(that estimates the range for a given azimuth, elevation angle
and time delay), it is highly desirable to have better constraints
on azimuthal fabric orientation. This is a goal that the ice-core
drilling community have been working toward (Hvidberg and
others, 2002; Weikusat and others, 2017). In the absence of ice-
core data, azimuthal constraints on fabric orientation could be
established using polarimetric radar-sounding measurements
from the ice surface (e.g. Fujita and others, 2006; Jordan and
others, 2019b) in conjunction with calibration using polarization
time delay data from all five ARA receiver stations.

As it stands, a key limitation of the radio propagation model is
that it is only valid for incidence planes which contain the prin-
cipal axes, which results in the s- and p-polarizations propagating
as independent modes through the ice sheet. A more general
propagation model, formulated for a general propagation direc-
tion relative to the principal axis system, would result in
wave-splitting and a coupling of the polarization modes. This
mode-coupling behavior could potentially be modeled by adapt-
ing a Jones matrix model for nadir radio propagation (Fujita
and others, 2006) for oblique radio propagation. Another key
limitation of the model is that we assume that the fabric eigenvec-
tors are precisely aligned perpendicular and parallel to flow and
are unchanging with ice depth. Whilst the model-data compari-
son is broadly consistent with this assumption, there is likely to
be at least some deviation from this idealized behavior.

Fig. 5. Modeled polarization time delay versus range for: (a) flow-perpendicular (case
1) and (b) flow-parallel (case 2) trajectories for three polar/elevation angles. The
curves are different lengths as the maximum depth and range is fixed by the
depth of the SPICE ice core fabric measurements.

Fig. 6. Model-data comparison between s-p and h-v polarization time delays. The
model assumes that the SPICE→ A2 and deep pulser→ A2 trajectories are perpen-
dicular to ice flow (model case 1) with baselines xb = 2353 m, xb = 3702 m and the
SPICE→ A4 and deep pulser→ A4 trajectories parallel to ice flow with baselines xb
= 3199 m, xb = 3700 m (model case 2). The measurements are azimuthally offset
from ice flow as described in Section 2.
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Because Cherenkov radiation occurs 
within applicable radar frequencies 
(~150 – 800 MHz), the effective 
medium model can be repurposed to 
model oblique propagation delay and 
aid neutrino energy reconstruction 

Further	reading:	Jordan	et	al.	(2020)	AoG	



Proposals for future work at  
South Pole 
•  Quantifying depth-space variations in 

fabric strength and orientation across 
IceCube domain 

•  Generalising Jordan et al. (2020)’s model 
framework for neutrino detection for off-
axis alignment 

•  Bistatic radar surveys to resolve a3  
•  Anisotropic flow parameterisation and 

modelling of South Pole domain  


