Polarimetric radar sounding methods to characterise ice birefringence, fabric anisotropy, and flow history

TJ YoungScott Polar Research InstituteTom JordanPlymouth Marine LaboratoryCarlos MartínBritish Antarctic Survey

What is ice fabric?

- Ice fabric represents the collective orientations of ice crystals
- Represented by a 2nd order orientation tensor with eigenvalues *a* along eigenvectors *x*:

$$a_1 + a_2 + a_3 = 1$$

 $a_1 < a_2 < a_3$ (radar, seismics)
 $a_1 > a_2 > a_3$ (ice cores)

The *c*-axis of a single ice crystal

Fabric anisotropy

- Fabric represents the deformation history of glacier ice
- "Complex history → complex fabric"

Isotropic (near-random) $a_1 \approx a_2 \approx a_3 \approx 1/3$ Near-surface firn/ice Uniform deformation

Vertical girdle $a_1 \ll a_2 \approx a_3$ Centre of glacier Uniaxial compression, longitudinal extension

 x_2

Χ1

Vertical cluster $a_1 \approx a_2 \ll a_3$ Near-bed ice Planar simple shear

 $a_1 \approx a_2 << a_3$ Glacier shear margin Lateral simple shear

Further reading

Azuma & Higashi (1985) AoG Alley (1988) Nature

* Shown are general examples (deviations occur!)

Birefringence in ice

Radar is able to detect the horizontal components of fabric anisotropy due to the birefringence of ice as an effective medium

 $\varepsilon = \begin{vmatrix} \varepsilon_x & 0 & 0 \\ 0 & \varepsilon_y & 0 \\ 0 & 0 & \varepsilon_z \end{vmatrix}$

Birefringence in ice

- In radargrams, periodic patterns appear as a result of birefringence
- Radar <u>must</u> be angled off-parallel and offperpendicular to fabric axes!

Polarimetric backscatter model

Node azimuth separation dependent on anisotropic scattering (r)

Node depth wavelength (ϕ) dependent on:

-5

-10

- <u>frequency</u> (f_c), <u>bulk birefringence</u> (Δε(z))
- crystal birefringence (through ϵ)

0 Relative power [dBm]

5

10

Further reading

Fujita et al. (2006) JGlac Young et al. (in review) JGR

Polarimetric radar sounding

Application to radar sounding using <u>linearly-polarised antennas</u> can detect azimuthal (*x-y*) fabric asymmetry

Modelled

Measured

Quad-pol setup

Azimuthal rotation setup

Brisbourne et al. (2019) JGR Young et al. (2020) TCD

Further reading

Polarimetric coherence

Application of polarimetric coherence to the effective medium model <u>quantifies</u> the azimuthal fabric asymmetry

$$c_{hhvv}^{\star} = \frac{\sum_{i=1}^{N} s_{hh,i} \cdot s_{vv,i}^{\star}}{\sqrt{\sum_{i=1}^{N} |s_{hh,i}|^2} \sqrt{\sum_{i=1}^{N} |s_{vv,i}|^2}}$$
$$\phi_{hhvv}^{\star} = \arg(c_{hhvv})$$
$$a_2 - a_1 = \frac{c}{4\pi f_c} \frac{2\sqrt{\varepsilon}}{f(\nu)\Delta\varepsilon'} \left|\frac{d\phi_{hhvv}}{dz}\right|$$

λT

Further reading: Young et al. (2020) TCD

Application: Thwaites Glacier

Fabric asymmetry $(a_2 - a_1)$

Further reading

Young et al. (in review) JGR

Relative azimuth (θ) [°]

Application: Thwaites Glacier

Application: Rutford Ice Stream

pRES observations approaching the shear margin of Rutford Ice Stream reveals increasing fabric asymmetry and axis rotation

Further reading: Jordan et al. (in review) JGR

Application: Rutford Ice Stream

Radar fabric measurements can be used to parameterise an anisotropic flow law via the fluidity tensor ψ

$\left(D_{11}\right)$	$=\psi_0$	ψ_{1111}	ψ_{1122}	ψ_{1133}	0	0	0		$\langle \bar{S}_{11} \rangle$
D_{22}		ψ_{1122}	ψ_{2222}	ψ_{2233}	0	0	0		\bar{S}_{22}
D_{33}		ψ_{1133}	ψ_{2233}	ψ_{3333}	0	0	0		\bar{S}_{33}
D_{12}		0	0	0	ψ_{1212}	0	0		\bar{S}_{12}
D_{13}		0	0	0	0	ψ_{1313}	0		\bar{S}_{13}
D_{23}		0	0	0	0	0	ψ_{2323})	$\langle \bar{S}_{23} \rangle$

Further reading: Jordan et al. (in review) JGR

Application: ARA Neutrino Detection

Because Cherenkov radiation occurs within applicable radar frequencies (~150 – 800 MHz), the effective medium model can be repurposed to model oblique propagation delay and aid neutrino energy reconstruction

Proposals for future work at South Pole

- Quantifying depth-space variations in fabric strength and orientation across IceCube domain
- Generalising Jordan et al. (2020)'s model framework for neutrino detection for offaxis alignment
- Bistatic radar surveys to resolve a_3
- Anisotropic flow parameterisation and modelling of South Pole domain