

HOW WARM IS THE SOUTH POLE?

P.G. Talalay^{1*}, Y. Li¹, R.C. Bay², P.B. Price²

¹Polar Research Center, Jilin University, Changchun, China ²Department of Physics, University of California, Berkeley, USA *e-mail: ptalalay@yahoo.com

January 19, 2021

Large scale GHF estimations

First pre-estimation

Temperature profile for glacial ice at the South Pole: Implications for life in a nearby subglacial lake

P. Buford Price*[†], Oleg V. Nagornov[‡], Ryan Bay*, Dmitry Chirkin*, Yudong He[§], Predrag Miocinovic*, Austin Richards[¶], Kurt Woschnagg*, Bruce Koci^{||}, and Victor Zagorodnov**

PNAS | June 11, 2002 | vol. 99 | no. 12

• GHF was estimated to 61±1 mW m⁻²

Ignoring the deepest points

Assumption of linear temperature distribution in the bottom part

Temperature at the bedrock interface is well below the PMT -9 \pm 0.7 °C

Subglacial Lake near South Pole

Seismic detection of a subglacial lake near the South Pole, Antarctica

L. E. Peters,¹ S. Anandakrishnan,¹ C. W. Holland,² H. J. Horgan,¹ D. D. Blankenship,³ and D. E. Voigt¹

GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L23501, doi:10.1029/2008GL035704, 2008

- Detection of subglacial lake ~10 km north-easterly from the South Pole suggests high GHF in this area.
- This lake is at least 4.2 km wide and up to 32 ± 10 m deep.
- Budd et al. (1984) pointed out that the presence of basal meltwater beneath most of the Antarctic ice sheet requires GHF ≥ 80 mW m⁻².

Upstream of South Pole

Anomalously high geothermal flux near the South Pole

T. A. Jordan¹, C. Martin¹, F. Ferraccioli¹, K. Matsuoka², H. Corr¹, R. Forsberg³, A. Olesen³ & M. Siegert ⁶

SCIENTIFIC **REPORTS** (2018) 8:16785

 Analyzing of ice-penetrating radar data upstream of South Pole revealed area with extremely high GHF of 120±20 mW m⁻², double the values expected for this cratonic sector of East Antarctica.

GHF estimation model

Geothermal heat flux from measured temperature profiles in deep ice boreholes in Antarctica

Pavel Talalay¹, Yazhou Li¹, Laurent Augustin², Gary D. Clow³, Jialin Hong¹, Eric Lefebvre⁴, Alexey Markov¹, Hideaki Motoyama⁵, and Catherine Ritz⁴

- Steady-state heat flow modeling
- Horizontal advection and horizontal heat conduction are assumed to be minimal
- Common genetic algorithm is used to find the optimal solution of temperature fitting

The Cryosphere

Drill site and ice sheet parameters	
Coordinates	90°S; 139°16′E
Years drilled (AMANDA & IceCube)	1993-2011
Surface elevation (m a.s.l.)	2800
Drilled depth (m)	2500
Ice thickness according with radar survey (m)	2810
Snow accumulation at surface (cm ice a ⁻¹)	8.15
Mean surface snow temperature (°C)	-51.4

View of the AMANDA drilling site, 1993-1994 (Photo: R. Morse)

Downhole assembly retrieving from the IceCube hole (Photo: T. Gustafsson) **Uncertainties from form factor** *m*

 $\left(\frac{Z}{H}\right)^{m+1}$

m is an adjustable form factor that accounts for the variation in vertical velocity

0 < *m* < 1

- Classically, vertical velocity depends linearly on z/H and m = 0.
- However, at an ice divide, the downward flow of ice is slower for the same depth than at locations away from the divide. Therefore, Raymond (1983) suggested the use of m = 1.0 for deformation in the vicinity of ice divides.
- Thus, we examine the form factor *m* at five levels:

0, 0.25, 0.50, 0.75, and 1.00.

 The best value for the form factor *m* is selected on the basis of the nonlinear correlation analysis between modeled and measured age scales.

GHF [mW m⁻²]

 The best value for the form factor *m* is selected on the basis of the nonlinear correlation analysis between modeled and measured age scales.

GHF [mW m⁻²]

Estimated temperature at the base

Thanks for your attention

https://www.sciencealert.com/discovery-of-ancient-rainforest-in-antarctica-is-a-grim-warning-of-earth-s-future

South Polar region ~90 million years ago