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The Problem

DESY

Initial task memory
requirement is a
guess. Tasks are
killed if usage

exceeds requests®.

Actual memory
requirement has to
be discovered by
trial and error.

Without
checkpointing, this

wastes compute time

and adds
scheduling/startup
overhead.
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*Memory limits apply to an entire multi-core pilot; tasks can get away with overuse if other tasks on the same pilot under-use.



Why this happens
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Benchmarking a dataset configuration can take arbitrarily large amounts of
human time

Each concrete task has its own random number stream that may trigger
memory allocations -> requirements unknown until all tasks are run

High-memory tasks are somewhat rare, and retry strategy ensures that tasks
eventually finish (except when they don't)

Can we do better?

(i.e. at least as well as a novice human babysitting jobs full-time)



A previous attempt

« Beat down energy-dependent variance by
partitioning power laws into narrow
segments (similar to IceTop generation
strategy)

« (Good:

More predictable memory usage
(energy range is a function of job
index)

 Less good:
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Relationship between energy and
memory usage depends on dataset
configuration -> still requires a
human to benchmark

Failed tasks create noticeable gaps
in the generated energy range”

Only used for a single Gen2 dataset

*If the failures depend on any feature that propagates to high-level
analysis, they bias any generation strategy, only in less obvious ways.
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¢ But: need to be careful to use

Partitioning a power law

Example: 1e5 events divided

spectrum N times (files), divide into 500 bins (each 1 file)

spectrum into N energy ranges

energy

of all files is a simple power law 10° 105 108 107 10°
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. icecube.weighting.PowerLaw.partition()
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A
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fresh look

Our operational problem is also an
active research topic

“‘Knowledge Management in
Bioinformatics” group at HU
investigates schedulers for e.g. gene
sequencing workflows that use
black-box resource requirement
predictions to reduce makespan

Use the same ideas to develop an
allocation strategy that minimizes
resource wastage, and test in on
archival IceProd job logs

o
Humboldt-
Universitat
Informatik
Qooo
T AN \
4!l aaaaagnoooreapoooon Y o00000000000080000000

L L
Sipht

(SRNA search workflow)

https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi



The log data
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10 months of IceProd

job logs (SQL dump generate
provided by D. Schultz) hits
. detector
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Insights (1)

« Compare initial request,
max, median, and inter-
decile range for 25 most
time-consuming task
definitions

* Range of actual max
memory usage much larger
than initial request

* Worst allocation quality
from small, undersized
tasks
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Insights (2)
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Compare input file size and
task memory requirement

Strong correlation for tasks
where both vary strongly

We can use in the input file
size to predict peak
memory usage
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Example
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User estimate: start with 4 GB
« on failure: double request and retry
Tovar et al.: start with 4 GB

« on first failure: retry with largest
memory usage seen so far

« on second failure: retry with largest
possible memory request

LWR (this work): run first 5% of tasks
with 4 GB request

» for subsequent tasks, use linear
model on input size; refine model
as tasks complete

« on failure: double request and retry
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(NB: not all tasks have this nice of a correlation)
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Choosing the size of the training set

Longer training
phase improves
prediction
quality

But: overall
MAQ suffers
from wastage
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Summary

Low-wastage regression can improve memory allocation quality for IceProd

jobs by nearly 50%.

« Largest improvement when memory requirement can be predicted from
upstream tasks

« Black-box, online method: no knowledge of the task content or initial
benchmarking needed

* Next steps:
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Present at HPCS 2019
Implement requirement prediction in lceProd2 (who, when?)

Gather more log data from newer IceProd2 releases (memory use wasn’t
collected for nearly a year)

Investigate predictions based on dataset config (i.e. meta project version,
generator, number of events, energy range, etc)
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