
Learning low-wastage memory 
allocations for IceProd tasks

Carl Witt <wittcarx@informatik.hu-berlin.de> 
Jakob van Santen <jakob.van.santen@desy.de> 
Ulf Leser <leser@informatik.hu-berlin.de>

mailto:wittcarx@informatik.hu-berlin.de
mailto:jakob.van.santen@desy.de
mailto:leser@informatik.hu-berlin.de


!2

The Problem

• Initial task memory 
requirement is a 
guess. Tasks are 
killed if usage 
exceeds requests*. 

• Actual memory 
requirement has to 
be discovered by 
trial and error. 

• Without 
checkpointing, this 
wastes compute time 
and adds 
scheduling/startup 
overhead.

large variance

*Memory limits apply to an entire multi-core pilot; tasks can get away with overuse if other tasks on the same pilot under-use.
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Why this happens

• Benchmarking a dataset configuration can take arbitrarily large amounts of 
human time 

• Each concrete task has its own random number stream that may trigger 
memory allocations -> requirements unknown until all tasks are run 

• High-memory tasks are somewhat rare, and retry strategy ensures that tasks 
eventually finish (except when they don’t)

Can we do better?
(i.e. at least as well as a novice human babysitting jobs full-time)
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A previous attempt

• Beat down energy-dependent variance by 
partitioning power laws into narrow 
segments (similar to IceTop generation 
strategy) 

• Good: 

• More predictable memory usage  
(energy range is a function of job 
index) 

• Less good: 

• Relationship between energy and 
memory usage depends on dataset 
configuration -> still requires a 
human to benchmark 

• Failed tasks create noticeable gaps 
in the generated energy range* 

• Only used for a single Gen2 dataset

Partitioning a power law
• Instead of simulating the same 

spectrum N times (files), divide 
spectrum into N energy ranges


• Much smaller variance in input 
energy


• [More] predictable memory 
requirements


• Transparent to the end user: sum 
of all files is a simple power law


• But: need to be careful to use 
the entire dataset

Example: 1e5 events divided 
into 500 bins (each 1 file)

icecube.weighting.PowerLaw.partition()

4

JvS, 2017-09-06 ICC call

Example: Gen2 MuonGun 
simulation

number  of events

still some residual 
variance (likely 
balloon events)

5*If the failures depend on any feature that propagates to high-level 
analysis, they bias any generation strategy, only in less obvious ways.
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A fresh look

• Our operational problem is also an 
active research topic 

• “Knowledge Management in 
Bioinformatics” group at HU 
investigates schedulers for e.g. gene 
sequencing workflows that use 
black-box resource requirement 
predictions to reduce makespan 

• Use the same ideas to develop an 
allocation strategy that minimizes 
resource wastage, and test in on 
archival IceProd job logs

As for offline schedulers, the performance of online sched-
ulers depends critically on the accuracy of resource usage
estimates. Our approach is tailored to scenarios where tasks of
a workflow are re-occurring or share similarities and can be
grouped into abstract tasks. Here, each program is considered
an abstract task and its invocation on concrete inputs a task.
Recent years have shown that a very large class of scientific
workflows are embarrassingly parallel, meaning that for many
of their tasks or subworkflows the input can be partitioned into
chunks and analyzed independently and in parallel [16]. This
observation led to the development of the nowadays extremely
popular Map-Reduce ecosystem of dataflow execution engines,
which are also increasingly used in scientific applications [8],
[17].

POS is directly based on the fact that in highly data-parallel
workflows, abstract tasks are executed many times and share
similarities. During workflow execution, a prediction model
for each abstract task is maintained which is continuously
updated whenever a new task finishes. POS uses these models
to predict peak memory usage and improve memory utilization
but is in principle applicable to arbitrary resource require-
ments. The critical choices in our approach are the selection
of prediction models and scheduling strategies that consider
uncertain and changing resource usage estimates. Here, we
make the following contributions:

• We present POS, an online scheduler that optimizes the
training of online learning models for scientific workflows
in data-parallel settings.

• We study the interaction effects of different prediction
models and schedulers during the execution of a work-
flow.

• We introduce Memory Allocation Quality (MAQ) as a
new indicator for the utilization of memory during the
execution of a workflow.

• We thoroughly evaluate POS in 100,000s of simulation
experiments on 1000 scientific workflows with widely
varying characteristics.

• We show that POS consistently outperforms a learning
version of the HEFT [?] scheduler and a learning greedy
scheduler, both in terms of overall runtime and MAQ.

The rest of this paper is structured as follows: Section 2 cov-
ers background and motivating examples, Section 3 reviews
related work, Section 4 describes POS and its approach to
online learning, Section 5 describes online prediction models,
Section 6 covers the experimental setup, and Section 7 states
the results. We conclude with a discussion and future work in
Section 8.

II. MOTIVATION

In this section, we briefly introduce the notion of a scientific
workflow and explain the potential for improving resource
usage that motivates this work.

A. Scientific Workflows
A scientific workflow specifies how different command-line

tools are combined to analyze large amounts of data in a data

Fig. 1: The basic structure of the Ligo and Sipht workflows.
Vertices correspond to invocations of programs, edges corre-
spond to task dependency relationships. All edges are directed
downwards.

parallel fashion. For instance, bioinformatics experiments [4],
web-scale text mining [3], and earth sciences experiments [2]
need to process terabytes of genomic data, text data, and
satellite images, respectively. These workflows often comprise
several programs with widely varying resource requirements
ranging from simple data transformations to complex analysis
steps. In scientific workflows, these steps are usually paral-
lelized by splitting the input data and processing the splits
independently, which yields a set of tasks. The results of
one task are then the input of another, resulting in a set
of precedence constraints on the tasks. Figure 1 shows two
exemplary workflows that illustrate the typical highly data
parallel structure of scientific workflows [18].

Scientific workflows treat both tasks and data as black
boxes, which contrasts with distributed computing approaches
centered around a single language or data model, such as
MapReduce [19], Pig Latin [20], or Spark [21]. Instead, each
analysis step is encapsulated as an invocation of a program
which is provided input files in an arbitrary format. This is
important to allow for maximum flexibility when designing
analyses by supporting native reuse of any third-party software
for complex analysis steps, and processing of data in any
format, e. g., images or domain specific file formats [22].

A standard model for scientific workflows is a data-flow
graph [1], i. e., a directed acyclic graph (DAG) where edges
correspond to files and vertices correspond to tasks (invoca-
tions of programs) that produce and consume these files. We
refer to the program associated to a task as an abstract task
while the invocation of the program on specific input files is
referred to as (concrete) task. The notion of abstract tasks is
important, as we predict task memory usage for each program
individually, based on the assumption that many programs
behave predictably across inputs. A task is called ready as
soon as the files that correspond to the ingoing edges of the
task’s node have been produced. A ready task can be executed

(sRNA search workflow)

https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi
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The log data

• 10 months of IceProd 
job logs (SQL dump 
provided by D. Schultz) 

• 727220 tasks with actual 
reported memory usage 

• 1 PB memory usage 

• 76 core-years

Result: Slope ✓1 and intercept ✓0 for computing the first
allocation according to 12, allocation multiplier b
re-allocation after failed attempts.

wmin  1;
✓⇤  (1,1,1);
l interpolate k values linearly between 0.01 and 0.7;
for quantile q 2 {1� a2 | a 2 l} do

✓1, ✓0  fit a quantile regression line for q;
b 2;
✓1, ✓0, b COBYLA(✓1, ✓0, b);
ai1 = ✓1si + ✓0;
if MAQ(ai1, base = b) < wmin then

✓⇤  (✓1, ✓0, b);
end

end

Algorithm 1: Low-Wastage Regression. Selecting model
parameters for peak memory prediction by refining the slopes
and intercepts found by quantile regression.

Corsika

filtering

detector

hits

generate

0 20 40 60
Resources [GiB-Years]

Used Oversized Undersized

Fig. 3: Total resource allocation per task name. User estimates
are rather conservative, strongly preferring over-sizing com-
pared to under-sizing.

V. CASE STUDY: ICECUBE WORKFLOWS

We evaluated our method on production logs from scien-
tific workflows at the IceCube project. This section provides
background information on the IceCube project, its scientific
computing workloads, the IceProd workflow management sys-
tem, and an analysis of the memory usage efficiency during a
ten month period in the production system.

A. IceCube Neutrino Observatory

The IceCube Neutrino Observatory is an array of 5160
Digital Optical Modules (DOMs) buried 1.5–2.5 km below
the surface of the glacial ice at the geographic South Pole.
Each DOM records the arrivals of individual Cherenkov pho-
tons as they pass through the 1 km3 instrumented volume.
Interpretation of the experimental data requires a model of
the detector’s response which cannot be measured directly.
Instead, it must be computed by Monte Carlo simulation of
individual particles. These simulations must be produced in

large quantity to generate a detector response model that is
sufficiently precise to analyze the experimental data.

B. Simulation Production Workflow for IceCube

IceCube’s simulation production workload is divided into
datasets; each dataset consists of a number of jobs and
each job is an instance of an abstract task. Abstract tasks
have a name, e. g., filtering, and parameters, e. g., a seed for
pseudo-random number generator used in the simulation. A
job corresponds to a specific binding of these parameters.
Overall, jobs are compute- and memory-bound, and tend to
not be especially time-critical.

Figure 3 shows the names of the most resource consuming
tasks in the workload. Gray indicates memory allocated to
failed tasks, pink indicates excessively allocated memory in
successful tasks, and green indicates the amount of memory
that was actually used. The combined width equals the total
allocated resources.

In the generate task, high-energy particles are propagated
through the detector medium. Particle interactions trigger
cascades in which single high-energy particles produce many
lower-energy particles. The stochastic nature of the process
also causes variance in peak memory usage. This task is
typically followed by hits, in which the induced Cherenkov
photons are tracked from their sources to the DOMs. De-
tector simulates the response of the detection electronics and
produces the same kind of data as the real detector. Finally,
filter applies the same event selection and reconstruction as for
experimental data. Corsika is a variant of generate that uses
the CORSIKA air-shower simulation program [17], which uses
static memory allocation.

C. IceProd Workflow Management System

Workflows are executed by IceProd [9], a custom scientific
workflow management system running on top of HTCondor
[18], [19]. An IceProd pilot runs in an HTCondor slot and
claims jobs from a central manager that fit within the slot’s
allocation of CPUs, GPUs, main memory, storage space, and
wall-clock time. Because the slots are distributed over both
dedicated and opportunistic resources at multiple sites, the
allocations can vary greatly, from e.g. a single CPU core with
4 GB of main memory to 24-core, whole-machine slots with
12 GB per core.

Each job’s initial resource requirements are based on a user
estimate for the abstract task. In case of insufficient resources,
a job is restarted with twice the requested resource whose
constraint was violated. For main memory constraints, the time
to failure tends to be uniformly distributed fraction of the time
it would take the task to run to completion.

D. Insights from Production Logs

In this section, we analyze the resource allocation and usage
during a 10 months period in the production system. We first
focus on the quality of the user estimates and then analyze the
predictive potential of input sizes and predecessor task metrics.

Metric: memory allocation quality

Fig. 1: The process of executing jobs on batch resources. The
memory estimation module is key to the resource-efficient
execution of jobs.

II. THE MEMORY ALLOCATION PROBLEM

To execute a workflow using a batch scheduler, a memory
usage estimate has to be provided for every attempt to execute
a job. If the estimate is larger than the actual peak usage of the
job, the attempt succeeds; otherwise, it fails and the job needs
to be submitted again, requesting increased resources. The
process is shown in Figure 1. The goal is to allocate memory
such that resource wastage as defined below is minimized.

In this work, we focus on peak memory usage, although
a job’s memory usage usually varies over time. The reason
is that in practice batch scheduler allocations are rigid, i. e.,
do not change over time. This means that job failures depend
only on whether peak memory usage exceeds the allocation.

A. Problem Definition
Let ki � 1 denote the number of attempts needed to execute

the i-th job in the workflow. We denote the memory allocated
to the j-th attempt of the i-th job as aij .

The resource usage of the i-th job corresponds to the
product of its peak memory usage ri and its run time ⌧i. The
resource usage of the attempt equals the job resource usage if
it succeeds, and 0 if the attempt fails. This notation is similar
to that in [10].

usage(ri, ⌧i, aij) =

(
ri⌧i if aij � ri
0 otherwise

(1)

U =
X

i

kiX

j=1

usage(ri, ⌧i, aij) (2)

Resource wastage corresponds to the product of excess
allocation and the attempt’s run time. On successful attempts,
we consider the difference between allocated memory aij and
actual peak usage ri as excess allocation. On failed attempts,
we consider all allocated memory aij as excess allocation.
We refer to the wastage resulting from the former and latter
as over- and under-sizing wastage, respectively. In case of
insufficient memory, the run time of a job usually differs from
its run time with sufficient resources, and is denoted as ⌧⇤

i
.

wastage(ri, ⌧i, aij) =

(
(aij � ri)⌧i if aij � ri
aij⌧⇤i otherwise

(3)

W =
X

i

kiX

j=1

wastage(ri, ⌧i, aij) (4)

This definition of wastage reflects the asymmetric costs
between allocating too much and too little memory. Usually,

a slight over-prediction is not a problem, but a slight under-
prediction potentially wastes a lot of resources. However, the
amount of under-sizing wastage heavily depends on the time
to failure ⌧⇤

i
.

We refer to the ratio between used and allocated resources as
memory allocation quality (MAQ). The metric relates resource
usage to both over- and under-sizing wastage. Low values
correspond to high relative wastage and 100% corresponds
to perfect memory allocation with no wastage at all. The
memory allocation problem consists in minimizing wastage,
or equivalently, maximizing memory allocation quality.

MAQ =
U

U +W
(5)

MAQ elegantly separates the quality of resource allocation
decisions from the workflow scheduling problem, since differ-
ent length schedules can have the same MAQ, depending on
how the attempts are packed into available resources by the
scheduler.

III. RELATED WORK

Tovar et al. [10] have proposed a strategy to solve the
memory allocation problem. The approach takes an empirical
distribution of peak memory usage as input and computes the
amount of resources a1 to assign to the first attempt of each
job. The initial allocation is chosen such that the sum of over-
and under-sizing wastage is minimized, under the assumption
that a job is restarted using a maximum allocation am, should
the first allocation be insufficient. To simplify the computation,
independence of run times and peak memory consumption is
assumed. As a result, Tovar’s a1 minimizes the amount of
excess allocation as defined in Section II-A, rather than the
wastage (which corresponds to excess allocation weighted by
attempt run time).

Witt et al. [11] have reviewed machine learning based
prediction methods for memory usage, run time, and queue
times in the context of batch scheduled workloads. Very few
approaches focus on predicting memory usage, and Tovar et
al. propose the first method with an asymmetric loss function.

Gaussier et al. [12] have proposed a machine learning
approach with asymmetric loss function for predicting the run
times of batch jobs. This is useful for batch schedulers with
backfilling, i. e., that allow short jobs to skip the queue to
fill currently idle resources that are insufficient for the job at
the head of the queue [13]. Similar to the memory allocation
problem, over- and under-prediction have asymmetric effects
on backfilling, because jobs with under-predicted run times
may turn out not to fit in a gap between other jobs.

Zhang et al. [14] have proposed a clustering-based approach
that determines groups of jobs with similar resource usage
within a workflow. A disadvantage of this approach is that
there is no means to predict the cluster of a job at runtime
other than from a previous execution. In contrast, we use job
parameters such as input size to predict peak memory usage
prior to the first execution of a job.

Peak usage*run time

wastage*run time 
(oversizing, failed undersized tasks)
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Insights (1)

• Compare initial request, 
max, median, and inter-
decile range for 25 most 
time-consuming task 
definitions 

• Range of actual max 
memory usage much larger 
than initial request 

• Worst allocation quality 
from small, undersized 
tasks
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Fig. 4: Memory usage as estimated by IceProd users compared
to actual peak, median, and interdecile memory usage of the
25 abstract tasks with the highest accumulated run time. Each
line shows the four metrics for one abstract task.

The log covers 727,220 tasks with a total memory usage of
1.06 PiB and a total CPU usage of 76 Core-Years1. The total
area, i. e., product of CPU time and memory usage, amounts
to 133 GiB-Core-Years. The median task resource usage is
32 Core-Minutes and 1.4 GiB. The total oversizing wastage
amounts to 136 GiB-Years, whereas only 12 GiB-Years are
allocated to jobs that failed due to insufficient memory. This
shows that user estimates are conservative and confirms the
known tendency of users to overestimate resource usage [6].
Dividing the total 133 used GiB-Years by the 133+136+12
allocated GiB-Years, we find that the overall MAQ is 47%.

Figure 4 shows the relationship between user estimates and
actual memory usage for the 25 most time-consuming abstract
tasks. These abstract tasks account for 73% of the total GiB-
Year usage. Recall that jobs that instantiate an abstract task
can have different peak memory usages. Figure 4 shows the
distribution of the summary statistics of job peak memory
usage across several abstract tasks. It is striking that all user
estimates are located between 2 and 6 GiB, whereas maximum
peak memory usage ranges from 0.25 to 49 GiB.

A feature of scientific workflows is the availability of
intermediate result set sizes, as given by the sum of a job’s
input files. In the workflows considered here, jobs consume at
most one input file and produce one output file. Figure 5 shows
the heterogeneity in memory usage (y-axis) and input size

1997,947 tasks with a total CPU usage of 136 Core-Years were excluded
due to missing memory usage information

Fig. 5: Variability of input size and memory usage per abstract
task. Regression based memory allocation has the highest
potential where input sizes and memory usage vary strongly
(top-right corner) and are highly correlated (red).

(x-axis) as measured by interdecile range. For a regression-
based approach, the abstract tasks in the top-right corner are
most interesting, since there is variance in memory usage
that can potentially be explained by input size. To measure
the correlation between input size and memory consumption,
we computed the Pearson correlation coefficient between both
variables for each abstract task, as displayed by the color of
the points.

We also checked the predictive potential of other features,
such as the peak memory usage of a task’s predecessor task.
Although in some cases a high correlation (> 0.8) exists, only
a small fraction of resources are allocated to these tasks.

VI. EVALUATION

We evaluate our method using the resource usage logs
described in Section V-D. For training the allocation methods,
we use the first k% of the data per abstract task, ordering
jobs by the time they finished in the production system. We
considered only the 142 abstract tasks that comprise at least
100 jobs, to make sure the training split contains at least five
jobs. This retains 99.7% of the overall log file.

In our experiments, we assume a relative time to failure of
0.5, such that ⌧⇤ = 0.5⌧ . This agrees with the expected time
to failure in the log files, which follows an approximately
uniform distribution with support [0, 1]. The parameters of
Tovar’s maximum-strategy are chosen such that am equals the
largest observed memory usage within the training set and av
equals the largest observed memory usage across all jobs in the
log. As described earlier, the IceProd workflow management
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Insights (2)

• Compare input file size and 
task memory requirement 

• Strong correlation for tasks 
where both vary strongly 

• We can use in the input file 
size to predict peak 
memory usage

Fig. 4: Memory usage as estimated by IceProd users compared
to actual peak, median, and interdecile memory usage of the
25 abstract tasks with the highest accumulated run time. Each
line shows the four metrics for one abstract task.

The log covers 727,220 tasks with a total memory usage of
1.06 PiB and a total CPU usage of 76 Core-Years1. The total
area, i. e., product of CPU time and memory usage, amounts
to 133 GiB-Core-Years. The median task resource usage is
32 Core-Minutes and 1.4 GiB. The total oversizing wastage
amounts to 136 GiB-Years, whereas only 12 GiB-Years are
allocated to jobs that failed due to insufficient memory. This
shows that user estimates are conservative and confirms the
known tendency of users to overestimate resource usage [6].
Dividing the total 133 used GiB-Years by the 133+136+12
allocated GiB-Years, we find that the overall MAQ is 47%.

Figure 4 shows the relationship between user estimates and
actual memory usage for the 25 most time-consuming abstract
tasks. These abstract tasks account for 73% of the total GiB-
Year usage. Recall that jobs that instantiate an abstract task
can have different peak memory usages. Figure 4 shows the
distribution of the summary statistics of job peak memory
usage across several abstract tasks. It is striking that all user
estimates are located between 2 and 6 GiB, whereas maximum
peak memory usage ranges from 0.25 to 49 GiB.

A feature of scientific workflows is the availability of
intermediate result set sizes, as given by the sum of a job’s
input files. In the workflows considered here, jobs consume at
most one input file and produce one output file. Figure 5 shows
the heterogeneity in memory usage (y-axis) and input size

1997,947 tasks with a total CPU usage of 136 Core-Years were excluded
due to missing memory usage information
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Fig. 5: Variability of input size and memory usage per abstract
task. Regression based memory allocation has the highest
potential where input sizes and memory usage vary strongly
(top-right corner) and are highly correlated (red).

(x-axis) as measured by interdecile range. For a regression-
based approach, the abstract tasks in the top-right corner are
most interesting, since there is variance in memory usage
that can potentially be explained by input size. To measure
the correlation between input size and memory consumption,
we computed the Pearson correlation coefficient between both
variables for each abstract task, as displayed by the color of
the points.

We also checked the predictive potential of other features,
such as the peak memory usage of a task’s predecessor task.
Although in some cases a high correlation (> 0.8) exists, only
a small fraction of resources are allocated to these tasks.

VI. EVALUATION

We evaluate our method using the resource usage logs
described in Section V-D. For training the allocation methods,
we use the first k% of the data per abstract task, ordering
jobs by the time they finished in the production system. We
considered only the 142 abstract tasks that comprise at least
100 jobs, to make sure the training split contains at least five
jobs. This retains 99.7% of the overall log file.

In our experiments, we assume a relative time to failure of
0.5, such that ⌧⇤ = 0.5⌧ . This agrees with the expected time
to failure in the log files, which follows an approximately
uniform distribution with support [0, 1]. The parameters of
Tovar’s maximum-strategy are chosen such that am equals the
largest observed memory usage within the training set and av
equals the largest observed memory usage across all jobs in the
log. As described earlier, the IceProd workflow management
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Example

• User estimate: start with 4 GB 

• on failure: double request and retry 

• Tovar et al.: start with 4 GB 

• on first failure: retry with largest 
memory usage seen so far 

• on second failure: retry with largest 
possible memory request 

• LWR (this work): run first 5% of tasks 
with 4 GB request 

• for subsequent tasks, use linear 
model on input size; refine model 
as tasks complete 

• on failure: double request and retry

Default IceProd strategy vs. state of the art 

Fig. 8: Top: 2D histogram showing the joint distribution of
input size and peak memory consumption on the 25,865
jobs of an exemplary abstract task. Dark areas indicate low
density, bright areas indicate high density. Tovar’s method
assigns each job a fixed amount of memory (orange line).
We assign memory proportional to input size (green line).
Compared to an ordinary least squares regression (dashed
line), our allocations minimize the resource wastage resulting
from prediction errors, rather than prediction errors. Bottom:
The exponential wastage resulting from different slope and
intercept values with fixed base b = 2. The dots indicate the
evaluated slopes and intercepts corresponding. The triangle
marks the best found solution, scoring 72% MAQ, which
corresponds to a global optimum.

Fig. 9: Effective MAQ when using coarse grained user esti-
mates during training and trained models afterwards. Modified
Tovar refers to the state-of-the-art approach with exponential
re-allocation. LWR refers to our method and LWR without
base refers to results when fixing the base to b = 2. Overall
MAQ achieved by LWR is indicated above the bar.

not directly use the estimates provided by IceProd users, since
these estimates are based on profiling the resource usage of
an abstract task. To simulate a scenario without detailed user
estimates, we compute coarse grained user estimates by taking
the median user estimate per task name (e. g., generate, hits,
detector, etc.). This reduces the 321 user estimates (for each
abstract task) to one user estimate for each of 16 task names.

Figure 9 shows the MAQ that can be achieved when training
models during workflow execution. When using 90% of the
data for training, the overall achievable MAQ is roughly the
same as relying completely on user estimates, since the learned
models are applied only to 10% of the jobs. By waiting for
5% of the jobs of each abstract task to finish before replac-
ing user estimates with predictions from the trained models,
overall MAQ can be improved to 71.2%. The relatively small
advantage of our method over the modified state-of-the-art
method (replacing the proposed maximum-strategy with our
exponential failure handling strategy) is explained by our log
analysis in Section V-D. Although some tasks, such as the
one in Figure 8, strongly benefit from per-job allocations, the
overall share of resources allocated to such predictable tasks
is not as large as expected for the IceCube workflows.

C. Parameter Choices

Figure 10 shows the base, slopes and intercepts as chosen
by LWR. The initial choice of 2 for the base is often already
a good choice. Increasing the allocations after failures by
other amounts, e. g., 50% or 80%, can be beneficial in some
cases, but doubling seems to be a sensible default. This is
also apparent from Figure 9, which shows that fixing the base
to b = 2 causes only a minor decrease in memory allocation
quality for this evaluation data set.

Slopes and intercepts concentrate around 0, however, Fig-
ure 11 shows that optimal slopes and intercepts do depend on
the abstract task at hand.

(NB: not all tasks have this nice of a correlation)
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Choosing the size of the training set

Train on 5% Train on 10% Train on 50% Train on 90%

min 25%
median

75% max min 25%
median

75% max min 25%
median

75% max min 25%
median

75% max
0%

25%

50%

75%

100%

M
AQ

Method
LWR

Tovar et al.

User Estimate

Failure Handling
Exponential

Maximum

Fig. 6: Comparison of the memory allocation quality (MAQ) cumulative distributions (higher is better) achieved by different
combinations of allocation method and failure handling strategy. MAQ is computed per abstract task, where the first k% (with
respect to a job’s finish time in the logs) of the data are used for training and the rest for evaluation. The blue line shows the
MAQs achieved when applying the user estimates from the IceProd users.

system uses variable size job pilots which can be even larger
than av . However, further increasing av only increases the
over-sizing wastage generated by this strategy. We thus select
a value that is as large as necessary and as small as possible,
although in practice av needs to be choosen according to the
resource pool. We set the minimum allocation size al for LWR
to 100 Megabytes.

A. MAQ Distributions
First, we show the memory allocation quality that is

achieved on an abstract task level. Abstract tasks are a natural
unit of analysis since we train one prediction model per ab-
stract task. However, since abstract tasks differ in the amount
of resources allocated to them, we subsequently conduct an
aggregate analysis that weights the memory allocation qualities
by an abstract task’s share of the overall resource allocation.

Figure 6 shows the cumulative distribution of memory
allocation quality across abstract tasks. User estimates score
a median MAQ of 49%. The state-of-the-art method as dis-
cussed in [10] uses the maximum failure handling strategy
and achieves only a median MAQ of 43% but improves to
55% and 83% when trained on 10% and 50% of the data,
respectively. Our method achieves 84% median MAQ using
only 5% of the data for training. However, it turns out that
the state-of-the-art method improves to 81.7% median MAQ
when applying the exponential failure handling strategy, even
though this corresponds to a different loss function than the
first allocations are optimized for. Overall, the maximum-
strategy used in the original approach by Tovar et al. is not
recommendable, as it becomes competitive only when using
at least 90% of the log data for training.

Relative to the state-of-the-art, our advantage in MAQ stems
mainly from reducing over-sizing, as shown in Figure 7.
This is mainly due to the superior exponential re-allocation
strategy. Comparing to the modified state-of-the-art method
with exponential re-allocation, we have a larger advantage
with respect to under-sizing wastage, although scoring better
in both aspects. The potential to reduce under-sizing wastage

Fig. 7: Cumulative distribution of over-sizing and under-sizing
wastage (lower is better), relative to the amount of used
resources. This shows that the improvements of our method
stem mainly from reducing over-sizing wastage.

is most apparent in scenarios where input size correlates to
peak memory usage, as shown in Figure 8. Here, our linear
model can save significant amounts of resources by assigning
less memory to jobs with smaller inputs and avoid a significant
amount of failures by allocating more resources to jobs with
large inputs.

B. Effective Memory Allocation Quality

In this section, we evaluate the overall memory allocation
quality when weighting the MAQs of the individual abstract
tasks by their share of the allocated resources. In addition, we
simulate the cost of training by taking into account the wastage
resulting from relying on user estimates during the collection
of training data. We split the data again according to job finish
times, using the first k% for training and the rest for evaluation.
This corresponds to replacing user estimates with predictions
from the trained models after a training period.

Since the goal is to relieve users from the burden of having
to determine the memory requirements of abstract tasks, we do
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large inputs.
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In this section, we evaluate the overall memory allocation
quality when weighting the MAQs of the individual abstract
tasks by their share of the allocated resources. In addition, we
simulate the cost of training by taking into account the wastage
resulting from relying on user estimates during the collection
of training data. We split the data again according to job finish
times, using the first k% for training and the rest for evaluation.
This corresponds to replacing user estimates with predictions
from the trained models after a training period.

Since the goal is to relieve users from the burden of having
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Fig. 8: Top: 2D histogram showing the joint distribution of
input size and peak memory consumption on the 25,865
jobs of an exemplary abstract task. Dark areas indicate low
density, bright areas indicate high density. Tovar’s method
assigns each job a fixed amount of memory (orange line).
We assign memory proportional to input size (green line).
Compared to an ordinary least squares regression (dashed
line), our allocations minimize the resource wastage resulting
from prediction errors, rather than prediction errors. Bottom:
The exponential wastage resulting from different slope and
intercept values with fixed base b = 2. The dots indicate the
evaluated slopes and intercepts corresponding. The triangle
marks the best found solution, scoring 72% MAQ, which
corresponds to a global optimum.
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Fig. 9: Effective MAQ when using coarse grained user esti-
mates during training and trained models afterwards. Modified
Tovar refers to the state-of-the-art approach with exponential
re-allocation. LWR refers to our method and LWR without
base refers to results when fixing the base to b = 2. Overall
MAQ achieved by LWR is indicated above the bar.

not directly use the estimates provided by IceProd users, since
these estimates are based on profiling the resource usage of
an abstract task. To simulate a scenario without detailed user
estimates, we compute coarse grained user estimates by taking
the median user estimate per task name (e. g., generate, hits,
detector, etc.). This reduces the 321 user estimates (for each
abstract task) to one user estimate for each of 16 task names.

Figure 9 shows the MAQ that can be achieved when training
models during workflow execution. When using 90% of the
data for training, the overall achievable MAQ is roughly the
same as relying completely on user estimates, since the learned
models are applied only to 10% of the jobs. By waiting for
5% of the jobs of each abstract task to finish before replac-
ing user estimates with predictions from the trained models,
overall MAQ can be improved to 71.2%. The relatively small
advantage of our method over the modified state-of-the-art
method (replacing the proposed maximum-strategy with our
exponential failure handling strategy) is explained by our log
analysis in Section V-D. Although some tasks, such as the
one in Figure 8, strongly benefit from per-job allocations, the
overall share of resources allocated to such predictable tasks
is not as large as expected for the IceCube workflows.

C. Parameter Choices

Figure 10 shows the base, slopes and intercepts as chosen
by LWR. The initial choice of 2 for the base is often already
a good choice. Increasing the allocations after failures by
other amounts, e. g., 50% or 80%, can be beneficial in some
cases, but doubling seems to be a sensible default. This is
also apparent from Figure 9, which shows that fixing the base
to b = 2 causes only a minor decrease in memory allocation
quality for this evaluation data set.

Slopes and intercepts concentrate around 0, however, Fig-
ure 11 shows that optimal slopes and intercepts do depend on
the abstract task at hand.
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Summary

• Low-wastage regression can improve memory allocation quality for IceProd 
jobs by nearly 50%. 

• Largest improvement when memory requirement can be predicted from 
upstream tasks 

• Black-box, online method: no knowledge of the task content or initial 
benchmarking needed  

• Next steps: 

• Present at HPCS 2019 

• Implement requirement prediction in IceProd2 (who, when?) 

• Gather more log data from newer IceProd2 releases (memory use wasn’t 
collected for nearly a year) 

• Investigate predictions based on dataset config (i.e. meta project version, 
generator, number of events, energy range, etc)
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