
Doing the IceTray Limbo
Getting parallel

Nathan Whitehorn

Michigan State

October 21, 2020

1 / 18



Problem

Traditional IceTray parallelism is event-based: one file/core

This provides maximum possible performance

It may use RAM inefficiently in two cases:
1 RAM per event is large, such that available RAM/processes is too low,

leaving some CPUs idle
2 Modules have tables that could be shared between events but require

an instantiation per process

Which?

Are we in one of these cases? Which one? The solutions are rather
different in the two cases.

2 / 18



Open Questions for Needs

What is the marginal cost (in RAM) of 1 more in-flight event?

Are per-event temporary costs dominated by the frame, or
frame-derived intermediates in modules?

How much RAM do we use in static tables?

How much RAM do we use in quasi-static tables (calculated from
GCD data)?

How much would we gain in resource availability today by reducing
the RAM footprint to tables + 1 event per node? To tables + Ncores

events?

How much would we gain in 5 years?

We can’t coherently decide our approach without knowing the answer to
every question above. I at least don’t know the answer to any of them.

3 / 18



Strategy 1: Event-level parallelism

Events or blocks of events handled per core

Basically what we do now, but could be per-event rather than per-file

Event-wise would reduce latency (e.g. for PNF), otherwise no change
in resource usage or results from what we do now

Fills CPUs well; high efficiency

Some reassembly overhead, especially if per-event

Room for Improvement

We could do a better job sharing initialization time data (photospline
tables, etc.) and GCD-time data (PMT simulation), addressing problem
#2. More on this later.

4 / 18



Strategy 2: Module-level parallelism

Module (or group of contiguous modules) per core/thread

Fills CPUs well, so long as no single module uses more than 1/Ncores

of CPU time

No reassembly overhead, but requires care in work division

Solves problem #2 (copies of quasi-static data)

Solves a limited number of instances of problem #1 involving large
per-event temporaries in a small (< Ncores) number of modules (does
this happen?)

This is quite similar to how we use GPUs.

5 / 18



Strategy 3: Intra-module parallelism

One event at a time, one module at a time

Modules internally break up work into threads

Solves problems #1 and #2

Easiest way to do this is per-DOM loops (calibration, likelihoods) –
limits parallelism to Nchan, which is > 8, so might be fine if per-DOM
loops dominate time.

Bad news:

Guaranteed to lower throughput, potentially drastically: not every
module parallelizable – is it worth it?
Maximally invasive to existing code
Significant task spawning and synchronization overhead

6 / 18



Intermediate Thoughts

Event-level: Low-hanging fruit mostly gone, the remainder is sharing
photospline tables etc.

Module-level: Can improve things in circumstances we may not have.

Intra-module: Even in principle, likely to result in significant
throughput loss unless we already have KNL-style suffering. Doing it
well requires a complete bottom-up restructuring of all our code and
may still lower efficiency.

Low-hanging fruit largely picked already. Returns in all cases may be small
except in the most RAM-constrained systems.

7 / 18



Processes and Threads

Threads:

Light-weight

Share memory (lowers memory
use)

Requires some care in
synchronization

Overhead in malloc() and
friends

There is the GIL

Processes:

Heavier-weight

Share only memory allocated
before fork() (includes spline
tables)

Frame exchange involves
serialization (amortized by lazy
serdes)

There is not the GIL!

8 / 18



The Freaking GIL

Python has a “global interpreter lock”:

Must be held when entering Python

We call Python at unpredictable times (e.g. shared pointer
destruction, logging)

Cannot be acquired automatically without LOR-induced deadlocks

Well, shit

Mostly ruins threads for us

How to Solve Some of It

I started some code to keep a deletion queue in another thread, but this
requires patching Boost. Makes things better, doesn’t solve the whole
issue and will take a while to get in.
But basically we have to use multi-process.

9 / 18



The Freaking GIL

Python has a “global interpreter lock”:

Must be held when entering Python

We call Python at unpredictable times (e.g. shared pointer
destruction, logging)

Cannot be acquired automatically without LOR-induced deadlocks

Well, shit

Mostly ruins threads for us

How to Solve Some of It

I started some code to keep a deletion queue in another thread, but this
requires patching Boost. Makes things better, doesn’t solve the whole
issue and will take a while to get in.
But basically we have to use multi-process.

9 / 18



IceTray Invariants

I3Modules need the following:

Within one module, events need to be strongly ordered with respect
to metadata (GCD, S, M, etc.)

Certain modules (rare) need strong ordering of events as well

No requirements that tray-wide services are actually global (though
see enxt slide)

No requirements that modules process events in any order with
respect to each other (the tray can process event 2 in module A
before event 1 in module B so long as each module sees events in
order and B runs after A)

No requirements that modules be in the same process

Modules interact with each other only via the frame (which is
serializable!)

We are incredibly lucky to have these semantics for trying to parallelize
IceTray internally.

10 / 18



Deterministic and Parallel Services

Need to make sure services are parallel-safe (thread-safe if threads)

IceTray has no requirement that modules see the same instance of
services

Subtle point is that RNGs need to stay deterministic

Key is that each module interacts with services without other modules
in the middle
Module-level parallelism with processes inherently safe
Some event-level parallelism (I3MPI) safe
Threads are dicy – probably need TLS and deterministic assignment of
(module, event) pairs to threads, which complicates worker pools

11 / 18



Technical Strategy 0: Making What We Have Better

Some possible gains with static tables and not much work:

Chris wrote code we aren’t using to share spline tables in SYSV
shared memory

Also could mmap() all tables and then let the kernel VM pager handle
this

Would have to pre-compute convolutions for photospline tables

Also could call os.fork() in production scripts after tray
initialization and before configuring I3Reader – all init-time memory
is then shared

Another area is that we can queue-and-return more in modules using
accelerators (e.g. GPUs) rather than blocking. This can break
determinism in random services and needs care

12 / 18



Technical Strategy 1: Per-event Parallelism

Usually have a mid-tray “balloon”:
1 Serial pipeline reads data
2 Round-robin distributor
3 N copies of set of modules sees event streams with gaps
4 A reserializer
5 Serial pipeline finishes processing

Potential memory balloon in reserializer

Breaks some modules that need continuous data

Need to take care of strong ordering/broadcast of meta-data – works
well if it doesn’t change much (SnowStorm?)

Remember that this basically doesn’t help us: only gain relative to
per-file is that we can make modules with big GCD-dependent tables
part of the serial pipeline and share them

13 / 18



Worked Example: I3MPI

Multi-process (and/or multi-node model)

I3MPIDispatch module implements round-robin dispatch and
reserialization, inserts another script (parallel) into the serial tray

Inner script starts with I3MPIReceiver, which takes frames from
I3MPIDispatch and starts tray

Ends with I3MPIReply, which sends them back

Does some internal evil with non-printable shadow frames to handle
dropped events

http://code.icecube.wisc.edu/svn/sandbox/nwhitehorn/i3mpi

14 / 18

http://code.icecube.wisc.edu/svn/sandbox/nwhitehorn/i3mpi


Technical Strategy 2: Per-module Parallelism

Limiting case is one module per thread

Input/output queue design makes this easy, handles all
synchronization with clean boundaries

Without the GIL, could easily do this with threads and all locking in
I3Tray

With the GIL, works well with multi-process since frames can be
serialized

Need to think about how to chunk up the tray into processes to
amortize serialization overhead

Obeys all I3Module invariants, requires zero changes outside of I3Tray

Reminder: identical number of in-flight events as now, but reduces
tables to a single copy per node

NB: If one module is 90% of CPU time, doesn’t help

15 / 18



Technical Strategy 3: Hybrid Work-Queue Systems

The sneaky option: have a thread pool that iteratively clears input
queues

Dynamically-chunked per-module parallelism

Could add a module flag that event-parallel is allowed and
dynamically do that too

Obeys all invariants

By far the cleanest option: least breakage, highest throughput

(Will require care to maintain ordering of RNG calls to keep
simulation reproducible)

The Bad News

This is totally unworkable with multi-process and requires threads. Also,
like all these strategies, may not solve any real problems.

16 / 18



Technical Strategy 4: Intra-module Parallelization

Could do threading inside modules

If it doesn’t touch frames, or logging, doesn’t hit GIL problems

Could amortize thread start-up costs by putting a thread-pool service
into I3Context

How many modules can usefully parallelize internally? If this isn’t
large (> 80%?), this makes things worse instead of better

Task queue entries appearing/disappearing at least at
Nmodules × Ncores per event – this could easily be tens of thousands of
synchronization operations per event

Requires rewriting every module using non-negligible CPU

The Ugly

This has the virtue of actually solving both problems, but is hugely
invasive and will need to be treated with great care.

17 / 18



Conclusions

We have a lot of freedom in IceTray to parallelize efficiently without
breaking APIs

What we need depends a lot on which issues we’re having, which I at
least don’t know

It’s not clear (to me) that we don’t already have the best strategy

I am deeply suspicious that intra-module parallelism will reduce
throughput.

My favorite strategies if we need to do something are the per-module
ones (#2 and #3)

18 / 18


