
Triggered (Dynamic Stack) CORSIKA
And Multiprocess Server

Kevin Meagher
IceCube Simulation Workshop
October 20, 2020

How CORSIKA currently works

IceTrayCORSIKA
Executable

Generates Primary Particle Spectrum
 (Energy, Direction Position)

Simulates air shower interactions

Propagate Muons

CORSIKA
BINARY
FORMAT

Propagate Photons

Detector Simulation

I3MCTree I3PhotonGPU

PROPOSAL CLSim

Simulates
Detector Response

CORSIKA files are generated by a separate CORSIKA binary
IceTray then processes in a linear fashion by each module
First Muons are propagated by by PROPOSAL,
Then Photons are processed by CLSim using the GPU
The entire I3Photon sequence is stored in memory before
being converted to the binned I3MCPE format 2

I3Photon = Lots of Memory
I3MCPE = Uses less memory

Why is CORSIKA so hard to produce?

Low Energy:

• CORSIKA shower files are created separately and
transferred at the start of the job which saturates IO

Medium Energy:

• CORSKIA showers need more CPU than GPU which is
an inefficient use of our cluster resources (CPUs sit idle
while waiting for GPUs to finish)

High Energy:

• Large showers push the memory limits on nodes.
CLSim needs to store the entire event (both the MCTree
and I3Photons) in memory. Power-law statistics require
that we have to allocate memory for very rare events.

3

IceTray

Propagate Muons

CORSIKA
Server

Propagate Photons

Detector Simulation

I3MCPE

I3PrimaryInjector

Review: Dynamic Stack CORSIKA and
Multiprocess Server CLSim

CLSimServer

GPU

CLSimClient

PROPOSAL

Generates Primary
Cosmic Ray Particles
(Similar to MuonGun)

Simulates
Detector Response

Propagate Air Shower

CLSimClient passes
individual particles from the
MCTree to the CORSIKA
Server, to PROPOSAL to
the CLSimServer

I3MCTree

I3MCPE are created
directly from the output
of each individual
CLSim propagation
Saving memory

4

What do we gain from this?

No Need to break up CORSIKA jobs by energy:
• Low Energy:

• No need to generate CORSIKA files separately
(prevents IO bottleneck)

• Medium Energy:
• Multiple instances of IceTray can share a CLSimServer

resulting in better CPU utilization
• High Energy:

• Individual particles are passed from CORSIKA to
PROPOSAL to CLSim and binned I3MCPE are made
for each particle from CLSim rather than the entire
event. This significantly reduces the memory footprint

• Multiple instance of IceTray can run in the same cluster
job

5

Event More Benefits:
Oversampling and Other Tricks

• Cosmic ray air shower primary can be generated
according to arbitrary spectral and spatial distributions
• Generate primaries directly on the detector cylinder

before cosmic ray propagation (similar to MuonGun)
• Different CORSIKA configuration cards can be sent to

different events
• Set muon energy threshold based on the inclination of

the shower
• CORSIKA propagation of a shower can be under-sampled

based on shower development
• Kill events with low leading energy muon

6

Other ideas which have been
proposed to bias simulation

• Oversample coincident events: eg 1 for coincident
showers, 10-4 for single showers

• Only populate EM component if the shower hits IceTop.
• Oversample IceCube muon “Lanes”
• Tau analysis: oversample charmed mesons
• ESTES: oversample veto hotspots
• MESE/cascades: oversample based on expected charge

in the veto region
• Cosmic rays: oversample high PT muons
• Force neutrino interaction in air shower

7

I3PrimaryInjector Module

• Utilizes S-Frame object to keep track of
generation surface

• Uses SampleImpactRay() to sample
on the surface of the cylinder

• Samples the energy from a different
power-law for each primary type

• Creates I3MCTree with primary
• Creates an I3ShowerBiasMap and puts

it in the frame (so CORSIKA knows how
to bias showers)

8

server_sim.py

One Script to run the entire shish kabob

• Creates I3CLSimServer
• Runs tray with:

• I3PrimaryInjector
• PolyplopiaSegment
• I3CLSimClientModule with the following propagators:

• CorsikaService as a CosmicEventGenerator
• PROPOSAL and I3CMC as propagators
• I3CLSimLightSourceToStepConverterAsync

Facilities to run multiple trays which connect to the same
I3CLSimServer existed in the past and will be reenabled soon

9

10

Very good agreement with baseline CORSIKA

Performance

11

Error bars represent standard deviation of 100 jobs

Biasing on the energy of the leading muon in the air shower
results in a significant decrease of the number of photons
simulated

Performance

12

Unfortunately, the GPU is severely underutilized so there is
little gain from adding leading muon energy bias

Error bars represent standard deviation of 100 jobs

Execution Time

CORSIKA was taking much longer with CorsikaServer than
when run standalone

13

CorsikaServer 105 min

PROPOSAL / CMC 6 min

CLSim 5 min

For medium energy CORSIKA primary = 3e4 to 1e6 GeV

• CorsikaService had a floor of ~40ms per shower.
• Socket was missing TCP_NODELAY
• With this fixed it should be possible to run the shish kabob on

a single GPU node process (test are currently being run)
14

CORSIKA Execution Time

Weighting

• Weighting for dynamic-stack will get complicated
• SampleImpactRay() introduces a zenith term in the weight
• The shower biases introduce another factor that needs to

be included in the weighting
• Planned future biases will need additional terms in the

weight as well

15

Weights implementation

• Written in pure python so it can be installed on laptops
without need for compiling combo

• Same basic structure as the objects in icecube.weighting
project but I had to rewrite the insides

• Will use S-Frames so:
• there will be no need to keep track of the number of

jobs which ended up in hdf5 files
• No need to access database to get weighting

information
• Will work with any combination of generation surfaces

• Interfaces for older CORSIKA and NuGen but since they
don’t have S-Frames you need to know the number of files

16

Weighting Usage

import pandas as pd
from icecube.primary_injector import
from icecube.weighting.fluxes import GaisserH4a

pd.HDFStore(fname,'r')
wobj = PrimaryWeighter(f)

flux = GaisserH4a()
weights = wobj.get_weights(flux)

histogram(f[‘Reco’][‘zenith’],weight=weights)

17

Flux Models in weighting

• The only thing needed to complete the weighting module
is the flux models

• Flux models are based on numexpr and very difficult to
understand

• Use the old CORSIKA particle ID’s
• I am not sure if all of the models are still in use

18

Issues with I3CLSim going forward

• The enums in I3Particle are poorly defined and seem to
mean different things to different modules
• For Example, what does InIce really mean?

• I3CLSimClientModule seems to have a lot of ad hoc code
that is oddly specific in how it handles incoming
I3MCTrees

• I anticipate problems going forward integrating other
photon propagators, other detector components such as
IceTop, or neutrino interactions

19

Currently the simulation client has
A very complicate structure

20

I3Module

I3CLSimClientModule

I3CosmicEventGenerator

CorsikaService
I3PropagatorService

I3CascadeMCService

I3PropagatorServicePROPOSALI3CLSimLightSource
ToStepConverter

I3CLSimLightSourceTo
StepConverterAsync I3CLSimStepTo

PhotonConverter

I3CLSimStepTo
PhotonConverterOpenCL

There is a lot of code that is specific to propagating certain particles in both
I3CLSimClientModule and I3CLSimLightSourceToStepConverterAsync
which I anticipate will cause problems

I Suggest we simplify the structure of the server so that adding
more components is conceptually more straight forward

21

I3Module

I3SimClientModule

CorsikaService

I3PropagatorService

I3CascadeMCService

I3PropagatorServicePROPOSAL

I3CLSimStepTo
PhotonConverter

I3CLSimStepTo
PhotonConverterOpenCL

Move all particle type specific code to the respective
I3PropagatorServices

Current Status

• Triggered CORSIKA produces results which are identical
to the reference dataset

• Performance Issues appear to be solved — runs to verify
this will be performed soon

• New weighting code will be pure python and easy to use
with S-Frames

• I anticipate refactoring the CLSim Server will need to be
done to add IceTop/photon propagators/Neutrino
interactions

• I am interested in a discussion on better definitions of
enums in I3Particle/replacing with something better

22

If you are interested in testing triggered corsika or want to
help implement any additional biasing please contact me

Also join #dynamic-stack on slack for updates

23

