
Juan Carlos Díaz Vélez - Simulation Workshop - 19 October, 2020

Polyplopia
(from gr., πολύς - polús, “many,”, and ὄψ-ops , "vision")

Coincident atmospheric shower events in IceCube

• polyplopia::PoissonMerger
• Injects background event read from a separate file on top of primary events in

the chain by sampling from a Poisson distribution over a time window ∆t.
• Also makes use of a CoincidentEventService that could be drop-in replaced with

other event services such as a MuonGun-based service.
• Writes a separate I3MCTree with background particles.
• Writes a combined I3MCPE map for signal and background.

• polyplopia::MPHitFilter
• Removes events that don’t produce light in the detector and removes branches

of I3MCTrees whose particles don’t produce enough PEs in the detector,
• Reduces the storage requirements.

• It is then up to the trigger-sim to split up Q-frames into P-frames events based on
triggers.

Coincident atmospheric shower events in IceCube

Polyplopia
(from gr., πολύς - polús, “many,”, and ὄψ-ops , "vision")

CoincidentEventService
 Inject cosmic-ray background from CORSIKA, generated with a "natural" spectrum/composition model (Hörandel
polygonato) read from I3File.

An alternative to using full CORSIKA cosmic ray simulations is to replace the background shower file
by a muon stream service implemented from the MuonGun generator configured to produce a muon
spectrum and bundle multiplicity comparable to the one that results from the Polygonato cosmic-ray
spectrum and mass distribution.

This approach, although less, accurate provides a much faster way to produce background
coincidences and can produce muons on demand, thus saving a lot of computation time.

CoincidentI3Reader
Service

MuonGunBackground
Service

OR

Generator
+Propagator

PoissonMerger

Photon
Propagation

The weighted average of the normalized all-
particle spectra has been calculated, taking the er-

rors of the individual measurements into account,
the result is presented in Fig. 11 and Table 5. The

Fig. 10. Normalized all-particle energy spectra for individual experiments. The renormalization values for the energy scale and ref-
erences are given in Table 3. The sum spectra for individual elements according to the poly-gonato model are represented by the dotted
line for 16Z6 28 and by the solid line for 16Z6 92. Above 108 GeV the dashed line reflects the average spectrum.

Fig. 11. Average all-particle energy spectrum. The line through the data represents a fit of the sum spectrum for elements with
16Z6 92 according to the poly-gonato model with rigidity dependent cut-off for (a) common cc and (b) common Dc. The dotted line
shows the spectrum for 16Z6 28. In addition, energy spectra for groups of elements are shown. Above 108 GeV the dashed line
reflects the average spectrum.

204 J.R. H€oorandel / Astroparticle Physics 19 (2003) 193–220

Fig. 11. Average all-particle energy spectrum. The line through the data represents a
fit of the sum spectrum for elements with 1 6 Z 6 92 according to the poly-gonato
model with rigidity dependent cut-off for common 𝛾c. The dotted line shows the
spectrum for 1 6 Z 6 28. In addition, energy spectra for groups of elements are
shown. Above 108 GeV the dashed line reflects the average spectrum.

where 𝜆 = R ∆t, is the average number of CR shower muons (bundles) entering the detector volume within a time window ∆t,
given a rate R, and k is the number of coincident showers in that same interval. Background showers are injected with a
uniform time distribution over the interval ∆t.

The default time window ∆t is 40 µs but can be made arbitrarily large given enough memory needed to store each shower
element, CPU needed to propagate each background shower, and GPU to propagate the emitted photons.

The background showers are assumed to be randomized in terms of energy and composition.

Same approach is used for injecting cosmic-ray muon background into both neutrino signal events as well as weighted
cosmic-ray shower events. In the case of the latter, a single weighted cosmic-ray shower is treated as a "signal" but in this
case k in would be replace by k-1 in order to avoid over-counting.

Number of coincident showers

<latexit sha1_base64="18sMmLd3JryvXduo8YDhQV2OJBM=">AAACPHicbVBNT9tAFFzTD2hKSyjHXrZElVKJRjYCgSohodJDj7RqElCcRM+bZ7Ly2mt2nytFlv9a+wf6B7jDqSrceu4m9YFC57LzZuZJ+ybKlbTk+xfe0oOHjx4vrzxpPF199nytuf6iZ3VhBHaFVtqcRGBRyQy7JEnhSW4Q0khhP0qO5n7/KxordfaFZjkOUzjLZCwFkJPGzdNQQYSqxPN3uZbW6qxqxO1ky8lpNIE3/ICHsQFR4qh8W4tV/Y6SqkxeVVu8nl32Mw8/oCLg1Bg3W37HX4DfJ0FNWqzG8bj5I5xoUaSYkVBg7SDwcxqWYEgKhVUjLCzmIBI4w4GjGaRoh+Wigoq/jrXhNEW+mG9nS0itnaWRy6RAU3vXm4v/8wYFxfvDUmZ5QZgJF3FeXChOms+b5BNpUJCaOQLCSPdLLqbguiLX9/z84O6x90lvuxPsdvxPO63D93URK+wl22RtFrA9dsg+smPWZYJ9Z1fsmt1437xL76f36290yat3Ntg/8H7/AQ/LrTo=</latexit>

f(k,�) =
e���k

k!
,� = R�t

Inject cosmic-ray background on top of primary or signal events in the main simulation chain by sampling
from a Poisson distribution with a probability

N
um

be
r o

f E
ve

nt
s

Coincident-Multiplicity

Arrival Times

µ µ

𝜈

tarrival = t + d/c

In order to merge events prior to propagation we need
an estimate of arrival time at detector

We sample a uniform distribution within the time window of size ∆t in [t0, t1]

t' = t - tarrival + t0 + 𝛿t
t' = t0 + 𝛿t - d/c

And offset all objects in subtree s.t. tarrival ➝ t0 + 𝛿t

double TimeAtDetector(const I3Particle& p){
 return p.GetTime() - std::min(0., ((p.GetDir()*p.GetPos())/ p.GetSpeed()));
 }

𝛿t = rand::uniform(0, ∆t)

t

tarrival

Events are randomized around the signal event with

[-∆t/2, ∆t/2]

hence the signal event is always at t=0 and the
maximum 𝛿t = ∆t/2.

Is this correct?... probably not

?

Arrival Times

?

What about the tail?

A: This is just the spread of hit times for individual
bundles

MPHitFilter

MCPEs

primary primary primary

signal bg bg

signal bg bg

1.Polyplopia: Combine I3MCTrees (MMCTrackList, etc.)

2.Photon propagation (PPC, CLSim)

3. MPHitFilter

a.Remove primary branches with no hits

b.Discard frame if does not contain "signal"
primary

c.Write PolyplopiaInfo & PECounts to frame

Keep

Discard

You can run Polyplopia:

A. at generation-level then a single photon
propagation. This ensures you are using the
same ice model, DOMoversizing, hole ice,
etc.

B. after propagating photons and removing
events with no hits. This is more efficient in
GPU utilization.

8

MPHitFilter

[gtx-00]$ dataio-pyshovel merged_pes.i3

http://icecube.wisc.edu/~juancarlos/video/10msec_w_noise.mp4

Polyplopia
(from gr., πολύς - polús, “many,”, and ὄψ-ops , "vision")

Coincident atmospheric shower events in IceCube

http://icecube.wisc.edu/~juancarlos/video/10msec_w_noise.mp4

