
CLSim

“OpenCL simulation”

Jakob van Santen
IceCube Simulation Workshop, 2020-10-19

2

History

• Originally written by Claudio Kopper
(then NIKHEF) for KM3NeT, ca. 2011

• Implemented in SeaTray, a fork of
IceTray

• Photon propagation in water/ice on
GPUs and CPUs, implemented in
OpenCL (source generated and
compiled at runtime for settings and
target device at hand)

• Particle propagation in Geant4

• Now: entire IceCube simulation
chain between initial particle
generation and electronics
simulation

3

Functionality

• Photon tracking: short segments of Cherenkov-emitting track (“steps”) ->
Cherenkov photons on the surfaces of spheres (“photons”)

• PE conversion: photons -> photoelectrons on cathodes of specific PMTs
(“PEs”)

• Particle propagation:

• IceSim-style: initial muons & cascades -> elementary light sources (track
and cascade segments), elementary light sources -> steps (via
parameterization)

• Geant4: initial particles -> steps

• Tabulation: steps -> photon fluxes in spatial cells

• No ice model fitting: models taken from ppc

4

Special considerations

• Photon propagation exploits parallelism of GPUs

• Individual events need to be grouped (or split) to fit in one invocation of the
propagation kernel

• Variable-size intermediate objects (propagated particles, detected photons)
can become a problem when thousands of frames are in flight

• -> integrate particle propagation and photon->PE conversion into photon
propagation loop

Architecture: multi-process CLSim

• I3CLSimClientModule harvests light
sources from frames

• I3CLSimLightSourceToStepConverte
rAsync converts light sources to
steps (interacts with threads in
I3CLSimClientModule)

• I3CLSimClient/Server communicate
with (potentially shared) GPU
propagator

• Most components implemented in
abstract interfaces and can be
swapped out at runtime. User-
swappable components are single-
threaded.

I3CLSimLightSourceTo
StepConverterAsync

PROPOSAL cmc Geant

parameterizations

I3CLSimClient

I3CLSimServer

I3CLSimClient
Module

GPU propagator

particles steps

photons

process
boundary

can also put
PPC here!

Limitations

Weak reproducibility

• Each GPU thread uses an
independent random number
sequence. Good?

• But: random stream is tied to the
thread -> results depend on mapping
of work items to threads

• New problem: results also depend on
the number of photons previously
handled by the same thread

• Clients interfere with each other

• Server maintains state between
propagations

• Results are reproducible, but only if all
functions are executed by the same
threads in the same order

I3CLSimLightSourceTo
StepConverterAsync

PROPOSAL cmc Geant

parameterizations

I3CLSimClient

I3CLSimServer

I3CLSimClient
Module

GPU propagator

particles steps

photons

process
boundary

share tray-level
RNG (from a
thread)

uses its own RNG

also uses its own
(threaded!) RNG
for some reason

uses its own RNGs

8

Is OpenCL dead?

• NVIDIA won the GPU wars, and never liked OpenCL

• No OpenCL implementation for NVIDIA/POWER9 (no fancy DoE
supercomputer for you!)

• Apple has also lost interest

• But: CLSim is not strongly tied to OpenCL.

• Abandon incrementally.

• Can replace the propagation implementation (c.f. CUDA/Optix backport
from NVIDIA https://github.com/RamonaNV/offline_production)

• Some features (e.g. the ubiquitous GetOpenCLCode()) may need a re-
think

https://github.com/RamonaNV/offline_production

9

Upgrade/Gen2 readiness

• Geometry assumes spherical modules, all with the same radius. “Pill-shaped”
module support exists in a branch.

• Local hole ice scattering still languishes in a fork.

• No general support for detailed structure of modules, harnesses, etc.

• Variety of photon->PE converters for Upgrade modules, of varying quality.
Should be finalized, ideally before Upgrade data shows up.

Discuss

