CLSIm

“OpenCL simulation”

Jakob van Santen
lceCube Simulation Workshop, 2020-10-19

HELMHOLTZ &oiichi e

History

DESY

Originally written by Claudio Kopper
(then NIKHEF) for KM3NeT, ca. 2011

Implemented in SeaTray, a fork of
lceTray

Photon propagation in water/ice on
GPUs and CPUs, implemented in
OpenCL (source generated and
compiled at runtime for settings and
target device at hand)

Particle propagation in Geant4

Now: entire lceCube simulation
chain between initial particle
generation and electronics
simulation

Functionality

* Photon tracking: short segments of Cherenkov-emitting track (“steps”) ->
Cherenkov photons on the surfaces of spheres (“photons”)

« PE conversion: photons -> photoelectrons on cathodes of specific PMTs
(“PES”)

- Particle propagation:

» lceSim-style: initial muons & cascades -> elementary light sources (track
and cascade segments), elementary light sources -> steps (via
parameterization)

« Geant4: initial particles -> steps
« Tabulation: steps -> photon fluxes in spatial cells

* No ice model fitting: models taken from ppc

DESY 3

Special considerations

« Photon propagation exploits parallelism of GPUs

« Individual events need to be grouped (or split) to fit in one invocation of the
propagation kernel

« Variable-size intermediate objects (propagated particles, detected photons)
can become a problem when thousands of frames are in flight

« ->integrate particle propagation and photon->PE conversion into photon
propagation loop

DESY 4

Architecture: multi-process CLSim

CPROPOSAL) CcmcD CGeanD
X f

« I3CLSimClientModule harvests light

sources from frames parameterizations

. I3CLSimLightSourceToStepConverte R4
rAsync. converts Ilght source§ to I3CLSimLightSourceTo
steps (interacts with threads in StepConverterAsync

I3CLSimClientModule)

« |3CLSimClient/Server communicate particles / \mps

with (potentially shared) GPU

propagator 1SS lient proer I3CLSimClient)
odule
« Most components implemented in process ﬁ_ i _7_ .
abstract interfaces and can be)
swapped out at runtime. User- CI3CLS|mServeD
swappable components are single- (7
threaded.

can also put CGPU propagatoD
PPC here!

DESY

Limitations

share tray-level uses its own RNG

Weak reproducibility (et ™" j

CPROPOSAL) CcmcD CGeanD
X f

« Each GPU thread uses an

isnedqeupeenncccieerggirc]lq?om number e N ea) KNG parameterizations
. ! for some reason \ # J /

« But: random stream is tied to the o

thread -> results depend on mapping I3CLSimLightSourceTo

of work items to threads StepConverterAsync
* New problem: results also depend on pamdes Steps

the number of photons previously

handled by the same thread photons

DL sImLlent I3CLS|mCI|en)
* Clients interfere with each other odule orocess
. boundary — ﬁ_ - _7_ o
« Server maintains state between
prcnjeugeﬂjcn1s (::K3(:l.&5”1TESEHW/ENF:]

* Results are reproducible, but only if all uses its own RNGs (7

functions are executed by the same CGPU))
opagator
threads in the same order ¥> propag

DESY

Is OpenCL dead?

 NVIDIA won the GPU wars, and never liked OpenCL

* No OpenCL implementation for NVIDIA/POWER9 (no fancy DoE
supercomputer for you!)

* Apple has also lost interest
« But: CLSim is not strongly tied to OpenCL.
« Abandon incrementally.

» Can replace the propagation implementation (c.f. CUDA/Optix backport
from NVIDIA https://github.com/RamonaNV/offline_production)

« Some features (e.g. the ubiquitous GetOpenCLCode()) may need a re-
think

DESY 8

https://github.com/RamonaNV/offline_production

Upgrade/Gen2 readiness

« Geometry assumes spherical modules, all with the same radius. “Pill-shaped”
module support exists in a branch.

« Local hole ice scattering still languishes in a fork.
* No general support for detailed structure of modules, harnesses, etc.

« Variety of photon->PE converters for Upgrade modules, of varying quality.
Should be finalized, ideally before Upgrade data shows up.

DESY 9

Discuss

