
PPC (2020 update)
PPC Notes
=============
October 16, 2020 D. Chirkin
--

• Added back CUDA version of the code. It now supports full functionality of the OpenCL
code. The CUDA version is 15-35% faster than the OpenCL version.

This is not yet integrated into the CMake build system, you may need to compile the CUDA library by
hand (replacing the OpenCL library) and possibly add load(cudart) statements

• Significant code re-working for running on systems with heterogeneous sets of GPUs. An
improved default workload distribution (proportional to advertised resources)

• Full documentation is at https://docs.icecube.aq/combo/trunk/projects/ppc/.
A number of documentation tickets/requests were addressed, which includes tilt, cable, hole ice,
DOM oversize discussion. Some of the newest features (mainly for single LED data simulation) are
not yet exposed there.

https://docs.icecube.aq/combo/trunk/projects/ppc/

PPC (2020 update)
PPC Notes
=============
October 16, 2020 D. Chirkin
--

• All icecal-approved ice models and many others are supported. This includes BFR-v1
(birefringence-based anisotropy description), EMRM (absorption-based), all SPICE 3.X
(scattering-based) and other legacy models (Lea, Mie, 2.X, 1, AHA, WHAM, etc.) It is
possible to configure and combine multiple anisotropy effects simultaneously.

• Split configuration directory is possible (feature added by Juan Carlos): PPCTABLESDIR and
ICEMODELDIR directories, and PPCHOLEICE file. Falls back to PPCTABLESDIR if unused.

PPC (2020 update)
PPC Notes
=============
October 16, 2020 D. Chirkin
--

• Some functionality for kernel sharing to clsim (by JVS)

• DirectFit improvements: reading bad time windows, total charge for QSAT check (Tianlu)

• PPC project also hosts llh/DirectFit (flasher-fitting and cascade/track reconstruction
software) and BFR (detailed photon propagation through birefringent crystals)

• Added script for reading in flasher data, which is now processed by standard IceCube
software (for all ice models from SPICE 3.X on) (Tianlu).

• More precise flasher LED model, including angular and timing distributions, positioning
inside DOM, photon blocking by internal structure (some), harness belt and cable.

Running ppc
Juan Carlos pointed me to
some awesome scripts that
are very simple to run and
similar between clsim and ppc

CLsim

PPC OpenCL

PPC CUDA 25% faster than OpenCL version

PPC
Update 2017

PPC Release Notes
=============
August 31, 2017 D. Chirkin
--
Release V02-05-00

• merged CUDA and OpenCL versions into single OpenCL version of code

• removed multiple define statements (permanently enabling optional code)

• multiple code optimizations, improved method of copying of photon data to the GPU

• fully merged particle/flasher code into single method, flasher parameters now passed in a
particle segment

• added Poisson/binomial sampling of generated number of photons (from mean prediction)

• added cable shadow and DOM tilt code and corresponding flasher-fitted files

• removed obsolete scripts and most of the ice directories; one (most recent and
comprehensive) ice directory remains

• added documentation that explains run time parameters and data files

Most recent code is now once again on the trunk. Release V02-05-00 coming soon.

All features of OpenCL, CUDA, and branch versions (i.e. monopole and SMP) are now
on trunk.

Only one ice model is maintained in resources/ice, the fully-featured latest SPICE,
with flasher-based angular sensitivity, cable shadow and DOM tilt files.

The emitting segments now have “photon number” in them, which means less data
transmitted to the GPU. They are unpacked in the first pass into the GPU memory

à this is actually a few percent faster
à no longer sampling photons in multiples of 10 to save memory
à allowed to merge flasher/particle interface, flasher configuration now

passed in the “photon segment”

Have my own wait code that avoids spinning CPU.

Only the latest light yield parametrizations (by Leif R.) are left in the code.

Geometry and RDE tables will replace the input from GCD, when present, will
produce a warning. Fixed a problem in using RDE from icetray with wavelength
dependence file in the ice directory.

New ppc functionality

Depth-dependent anisotropy, passed in the icemodel.dat file (2 new columns)

DOM tilt and cable position, configurable with dx.dat and cx.dat files

Poisson sampling of the photon number determined by light yield parametrizations

Binomial downsampling of CLStep photons (when ang. sens. curve always below 1)

Direct hole ice is now in the OpenCL version, always compiled in

Increased number of wavelength bins passed to GPU to 512 (up from 32)

Full documentation of all parameters and input files

PPC
Update 2017

Photon tracking with tables

• First, run photonics to fill space with
photons, tabulate the result

• Create such tables for nominal light
sources: cascade and uniform half-
muon

• Simulate photon propagation by
looking up photon density in tabulated
distributions

à Table generation is slow
à Simulation suffers from a wide range
of binning artifacts
à Simulation is also slow! (most time is
spent loading the tables)

Direct photon tracking

propagate photons directly when needed

photon propagation code (ppc) or OpenCL simulation (clsim)

insert photon

length to absorption distance to next scatter

propagate to next scatterscatter

check for
intersection
with OMs

Check for
distance to
absorption

hit lost

Simulation: Direct photon tracking

Same code used for both
flasher simulation/ice

calibration and
muon/physics data

simulation

execution threads

propagation steps

photon absorbed
new photon created
(taken from the pool)

threads complete
their execution
(no more photons)

scattering (rotation)

New ppc
Most recent code has been moved to the “dima” branch.

Currently only OpenCL version is there (likely to remain like that, w/o the CUDA code)
à have my own wait code that avoids spinning CPU

Many optional code option defines are now gone, all of the code is always compiled.
à monopole code is always “in”

Only one ice model is maintained in resources/ice, the fully-featured latest SPICE,
with flasher-based angular sensitivity, cable shadow and DOM tilt files

The emitting segments now have “photon number” in them, which means less data
transmitted to the GPU. They are unpacked in the first pass into the GPU memory

à this is actually a few percent faster
à no longer sampling photons in multiples of 10 to save memory
à allowed to merge flasher/particle interface, flasher configuration now
passed in the “photon segment”

New ppc functionality
Depth-dependent anisotropy, passed in the icemodel.dat file (2 new columns)

DOM tilt and cable position, configurable with dx.dat and cx.dat files

Poisson sampling of the photon number determined by light yield parametrizations

Binomial downsampling of CLStep photons (when ang. sens. curve always below 1)

Direct hole ice is now in the OpenCL version, always compiled in

Increased number of wavelength bins passed to GPU to 512 (up from 32)

One example script; documentation: in progress

15

Overview of inputs to PPC

16

Ice Configuration
Ice is configured in a directory, its location passed to the module via a parameter
PPCTABLESDIR (set with os.putenv).

Ice models are now kept in ice-models module. The most recent model is maintained
in ppc (“dima” branch).

SPICE 3.2:
as.dat angular sensitivity curve: flasher-based with p=0.3
cfg.txt main configuration file
icemodel.dat ice model table (scattering, absorption vs. depth)
icemodel.par wavelength dependence coefficients
Icemode.bbl air bubble parametrization above 1350 m depth
rnd.txt random number multipliers
tilt.dat table of ice layer relief values at tabulated points
tilt.par locations of tabulated points
wv.dat normalized cherenkov+transmission convolution
cx.dat table of DOM tilts
dx.dat table of cable positions

Ice configuration
If running ppc outside icetray (as a stand-alone command-line program or in
concert with DirectFit (distributed with ppc in private/ppc/llh directory) the
following files are required:

geo-f2k detector geometry

Optional files:

eff-f2k table of RDE values
wv.rde tabulated difference of high-QE/nominal response

vs. wavelength
hvs-f2k table of high voltages (zero voltage disables DOM)

There are also multiple additional input files to llh/DirectFit, these will be
described in documentation

18

Traditional “hole ice” angular sensitivity

as.dat

19

Ice Tilt

N

E

C1
30

-S
ky

w
ay

Direction of
tilt gradienttilt.{dat,par}

20

Photon wavelength sampling

Fl
as

he
r 4

05
 n

m
For muons: folded with

Cherenkov spectrum

wv.dat

21

Main configuration file: cfg.txt
cfg.txt:

ppc configuration file: follow strict order below
5 # over-R: DOM radius "oversize" scaling factor
1.0 # overall DOM efficiency correction
0.35 # 0=HG; 1=SAM
0.9 # g=<cos(theta)>

130 # direction of ice tilt (perp. to flow)
-0.106 # magnitude of major anisotropy coefficient k1
0.053 # magnitude of minor anisotropy coefficient k2

0.5 # hole ice radius in units of [DOM radius]
0.5 # hole ice effective scattering length [m]
100 # hole ice absorption length [m]
0.35 # hole ice 0=HG; 1=SAM
0.9 # hole ice g=<cos(theta)>

nominal DOM
oversized DOM

ph
ot

on

22

Approximation to Mie scattering

fSL

Simplified Liu:

Henyey-Greenstein:

Mie:

Describes scattering on acid,
mineral, salt, and soot with
concentrations and radii at SP

HG/SAM mixing fraction

23

Anisotropy parameterization
The scattering function we use is f(cos q), a combination of HG and SL.

One obviously covariant extension that satisfies the symmetry condition of the
previous slide is

In the basis of the 2 main scattering axes and z (presumably the third one)

We can impose abg=1, thus this parametrization introduces two extra parameters: a,b
(in addition to the direction of scattering preference).

The geometric scattering coefficient is constant with azimuth. However, the effective
scattering coefficient receives some azimuthal dependence.

24

Scattering anisotropy

Anisotropy coefficients

25

Direction of anisotropy

8% less scattering
36o NW

N

E
Ice flow direction

41o NW

C1
30

-S
ky

w
ay

Anisotropy direction

26

Direct Hole Ice simulation

nominal

hole ice

27

Flasher/SC configuration

Can simulate:
• horizontal or tilted flashers
• individual, several, or cylindrically-symmetric
• 2d gaussian (von Mises-Fisher) with 9.7 degree spread
• rectangular emission profile (in time)
• single wavelength or specify in wv.dat

• both standard candles, locations and direction hard-coded

28

Light yield parametrization

Calculated 2450.08 of Cherenkov photons per meter of bare muon track when
convolved with transmission properties of glass, gel, and detection efficiency of
PMT.

Additional factor: efficiency, or “cable shadowing” is applied to this number.

Via compile-time configuration choose:
Light yield:

• C.W. parametrization of bare muon/em/hadr. cascades
• M.K. updated parametrization for em/hadr. cascades
• Leif Raedel updated parametrization of muon/em/hadr. cascades

Longitudinal profile and Cherenkov cone:
• C.W. parametrization (simplified fit)
• Leif Raedel updated parametrization

PPC
Update 2014

IceCube simulation with PPC
photon propagation code

execution threads

propagation steps

photon absorbed
new photon created
(taken from the pool)

threads complete
their execution
(no more photons)

scattering (rotation)

Dmitry Chirkin, UW Madison

Direct photon tracking with PPC

• simulates flasher/standard candle photons
• same code for muon/cascade simulation

• uses tabulated (in 10 m depth slices) layered ice structure
• employs 6-parameter ice model to extrapolate in wavelength
• tilt in the ice layer structure can be taken into account

• uses improved scattering function: linear combination of HG+SAM

• precise simulation of the longitudinal development of cascades and
• angular distribution of particles emitting Cherenkov photons

photon propagation code

Oversized DOM treatment
This is a crucial optimization.

The oversize model was chosen carefully to produce the best possible agreement
with the nominal x1 case.

Some bias is unavoidable since DOMs occupy larger space:
x1: diameter of 33 cm
x5: 1.65 m
x16: 5.3 m

nominal DOM
oversized DOM

oversized ~ 5 times
ph

ot
on

Approximation to Mie scattering

fSL

Simplified Liu:

Henyey-Greenstein:

Mie:

Describes scattering on acid,
mineral, salt, and soot with
concentrations and radii at SP

Dependence on g=<cos(q)> and fSL

g=<cos(q)> fSL

0.8 0
0.9 0
0.95 0

0.9 0.3
0.9 0.5
0.9 1.0

flashing 63-50 à 64-50

“hole ice” angular sensitivity

Wavelength distributions

Cherenkov emission 405 nm flashers

ppc icetray module
• at http://code.icecube.wisc.edu/svn/projects/ppc/trunk/

• uses a wrapper: private/ppc/i3ppc.cxx, which compiles by cmake into the
libppc.so.

• an additional library libxppc.so is compiled by default for the OpenCL
version or by running make in private/ppc/gpu:

à “make glib” compiles gpu-accelerated version (needs cuda tools)
à “make clib” compiles cpu version (from the same sources)

à “make olib” in private/ppc/ocl to compile the OpenCL version by hand

• link to libxppc.so and libcudart.so (if CUDA version) from build/lib directory

• this library file must be loaded before the libppc.so wrapper library

http://code.icecube.wisc.edu/svn/projects/ppc/trunk/

Ice configuration

as.dat DOM angular sensitivity parametrization
cfg.txt configuration file
icemodel.dat ice table: depth, be(400), adust(400), dT
icemodel.par wavelength dep. parameters: a, k, A, B
rnd.txt random number multipliers
tilt.dat ice tilt table (depth corrections)
tilt.par positions of tabulated points
wv.dat source wavelength dependence
wv.rde correction to high-QE DOM wavelength dep.

cfg.txt

ppc configuration file: follow strict order below
5 # over-R: DOM radius "oversize" scaling factor
1.0 # overall DOM efficiency correction
0.4 # 0=HG; 1=SAM
0.9 # g=<cos(theta)>

225 # direction of ice tilt (perp. to flow)
0.047 # magnitude of ice anisotropy along tilt
-0.075 # magnitude of ice anisotropy along flow

0.0 # hole ice radius in units of [DOM radius]
0.5 # hole ice effective scattering length [m]
100 # hole ice absorption length [m]
0.45 # hole ice 0=HG; 1=SAM
0.9 # hole ice g=<cos(theta)>

ppc example script run.py
if(len(sys.argv)!=6):

print "Use: run.py [corsika/nugen/flasher] [gpu] [seed] [infile/num of flasher events] [outfile]"
sys.exit()

…
det = "ic86"
detector = False
…
os.putenv("PPCTABLESDIR", expandvars("$I3_BUILD/ppc/resources/ice/mie"))
…
if(mode == "flasher"):

…
str=63
dom=20
nph=8.e9

tray.AddModule("I3PhotoFlash", "photoflash")(…)

os.putenv("WFLA", "405") # flasher wavelength; set to 337 for standard candles
os.putenv("FLDR", "-1") # direction of the first flasher LED
…
Set FLDR=x+(n-1)*360, where 0<=x<360 and n>0 to simulate n LEDs in a
symmetrical n-fold pattern, with first LED centered in the direction x.
Negative or unset FLDR simulates a symmetric in azimuth pattern of light.

tray.AddModule("i3ppc", "ppc")(
("gpu", gpu),
("bad", bad),
("nph", nph*0.1315/25), # corrected for efficiency and DOM oversize factor; eff(337)=0.0354
("fla", OMKey(str, dom)), # set str=-str for tilted flashers, str=0 and dom=1,2 for SC1 and 2
)

else:

ppc example script run.py (cont.)

os.putenv("PPCTABLESDIR",
expandvars("$I3_BUILD/ppc/resources/ice/lea"))

load("libxppc")
load("libppc")

tray.AddModule("i3ppc", "ppc")(
("gpu", gpu),

)

PPC module parameters

AddParameter ("gpu", "GPU to use", gpu);
AddParameter ("bad", "DEPRECATED : DOMs not to use", bad);
AddParameter ("fla", "Flasher position", fla);
AddParameter ("nph", "Number of photons", nph);
AddParameter ("wid", "Flasher pulse width", wid);
AddParameter ("MCTree", "MCTree to use", mct);
AddParameter ("JPALpulses", "Simulate Jitter and

Pre,After,Late pulses", false);
AddParameter ("cyl", "use cylinder (1) or strict +300 m

(0) detector volume", cyl);

Environment settings

PPCTABLESDIR configuration directory
WFLA sets single wavelength (disables wv.dat)
FLDR configuration of flasher LEDs
FWID flasher LED beam width (9.7 default)

NPHO/NPHO_0 number of photons per 1 thread

CUDA:
BADMP/BADMP_0 disables given MP (multiprocessor)

OpenCL:
XMLT/XMLT_0 simultaneously load multiple job grids
OCPU/OGPU/OACC use only CPU/GPU/accelerator cards

ppc-pick and ppc-eff

ppc-pick: restrict to primaries below MaxEpri

load("libppc-pick")

tray.AddModule("I3IcePickModule<I3EpriFilt>","emax")(
("DiscardEvents", True),
("MaxEpri", 1.e9*I3Units.GeV)
)

ppc-eff: reduce efficiency from 1.0 to eff

load("libppc-eff")

tray.AddModule("AdjEff", "eff")(
("eff", eff)
)

Additional resources

README files:
resources/README
http://icecube.wisc.edu/~dima/work/WISC/ppc/readme.html

SPICE paper:
http://arxiv.org/abs/1301.5361

Anisotropy paper:
http://arxiv.org/pdf/1309.7010.pdf

Code forks:
http://code.icecube.wisc.edu/svn/sandbox/aobertacke/ppc/
http://code.icecube.wisc.edu/svn/sandbox/schatto/ppc-tables/

http://icecube.wisc.edu/~dima/work/WISC/ppc/readme.html
http://arxiv.org/abs/1301.5361
http://arxiv.org/pdf/1309.7010.pdf
http://code.icecube.wisc.edu/svn/sandbox/aobertacke/ppc/
http://code.icecube.wisc.edu/svn/sandbox/schatto/ppc-tables/

Run Time Benchmarks

D. Schultz

Ratio run time ppc/clsim = 0.62

From https://wiki.icecube.wisc.edu/index.php/GPU_Benchmarks

https://wiki.icecube.wisc.edu/index.php/GPU_Benchmarks

