

Cascade Monte Carlo (cmc) Overview

Brian Clark

IceCube Simulation Workshop 2020 October 19, 2020

(where we'd all like to be)

Quick overview

• **cmc** models elongation in cascades above a TeV

- Please see the (recently migrated!) docs:
 - https://docs.icecube.aq/combo/trunk/projects/cmc/index.html

- Developer credit belongs to all the people who worked on cmc before me (grabbed from the commit history, sorry if I omitted you!)
 - o Gary Binder
 - o Juan Carlos Diaz-Velez
- o Don La Dieu
- o Lisa Gerhardt

- Kotoyo Hoshina
- Claudio Kopper
- Alex Olivas
- o Jakob van Santen

- David Shultz
- Chris Weaver
- o Nathan Whitehorn
- Bernhard Voigt

Why cmc?

- Without special treatment, cascades in simulations have no spatial extension
- Above a few TeV, this is a bad approximation
- CMC addresses this issue
- Two general regimes
 - o <1 PeV: "continuous loss" parameterization</p>
 - \circ >1 PeV: 1D shower simulation

<1 PeV Showers

"Continuous loss" parameterization

The <u>PDG</u> provides cascade parameterization

 a and *b* are fitted from MC
 Chris Wiebusch did this with GEANT

Cascade depth $\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)}$

<1 PeV Showers

"Continuous loss" parameterization

- CMC replaces the single first shower with a series of sub-showers
- Sub cascades are binned in (user configurable) multiples of the radiation length

Cascade split into sub-cascades (Total Energy: 100 TeV)

>1 PeV Showers

1D Shower Simulation

- Above 1 PeV, the shower development is simulated
- Includes:
 - \circ Pair-production
 - o Bremsstrahlung
 - And LPM (which suppresses both above 10 PeV)

LPM = MFP rises > 10 PeV

Hadronic Showers

Adding muons

- For hadronic cascades, daughter muons are also produced (and later propagated by PROPOSAL)
- Mean number of muons is parameterized
 from Corsika simulations
- For each cascade, Poisson random number of muons added

Hadronic Showers

Energy scaling factor

- Two issues at play (see <u>AMANDA internal</u> <u>report</u> from Marek)
 - Hadronic showers produce less light than EM showers (slow neutrons, Cherenkov threshold is higher for hadrons, etc.)
 - Hadronic showers have fluctuations
- Hadronic cascade energies scaled *down* in order to match an EM shower with the same light yield
- And, the energies are (Gaussian) fluctuated about a mean scaling factor

How to use cmc

Use in the shiskabob

- Access to cmc functionality is mainly provided by the I3CascadeMCService

 Can see it in various <u>simprod segments</u>
 prop = icecube.cmc.I3CascadeMCService(...)
- Configurable thresholds for few critical parameters, including

 At what energy to transition from parameterization to simulation
 Maximum number of daughter muons
- **cmc** is called after the first run of **PROPOSAL**, and **PROPOSAL** is called *again* afterward (to propagate daughter muons)

Recent Bugfix

Particles with negative energy

2130621 Hadrons (133.192m, 785.657m, 221.306m) (86.3862deg, 14.519deg) 92927.7ns -2.84217e-14GeV 0m

- Erik found <u>bug</u> where **cmc** sets hadronic cascades to have negative energy
 - Causes seg-fault during photon propagation
 - Hint: energy is very near limit of floating point precision
- Solution

◦ In rare circumstances, daughter muons can completely exhaust the original hadronic cascade, and cascade energy is reduced to $E_0 - \sum E_{\mu}$

• Which can be zero to within machine precision

<u>Now</u>, **cmc** performs check for "near machine precision 0" (<u>eps diff method</u>)
 And, has new asserts against placing any particles into the I3MCTree with E<0
 <u>Not the first offense</u> for **cmc**...

Conclusion

Wrapping up

- **cmc** simulates spatial extension of high energy EM and hadronic cascades
- **cmc** is Upgrade/Gen2 ready
 - But, runtimes become non-trivial at high energies
 - o 3 minutes @ 10 EeV vs milliseconds at PeV energies
- Code recently hardened against negative energy depositions

Backup

>1 PeV Showers

1D Shower Simulation

- Three steps for every cascade (or sub-cascade) above a threshold (usually 1 TeV)
 - 1. Determine interaction point for e^+e^- /brem production
 - **1**. Mean-free path (λ) calculated from differential cross section
 - 2. Interaction point is drawn randomly from $\exp(-x/\lambda)$
 - 2. Create brem or e^+e^-
 - 1. Sample differential cross section to get fraction energy of secondaries
 - 3. Create deposition OR further
 - 1. If energy is > sim threshold, repeat step 1
 - 2. Otherwise, create an energy deposition according to the "continuous loss" parameterization

>1 PeV Showers

1D Shower Simulation pseudo-code

```
particles = [electron]
while particle = particles.pop():
    dx = sampleFreePath(particle.energy)
    y = sampleCrossSection(particle.energy)
    if particle == ELECTRON:
        photon = Photon(particle.x + dx, particle.energy * y)
    if particle == PHOTON:
        electron1 = Electron(particle.x + dx, particle.energy * y)
        electron2 = Electron(particle.x + dx, particle.energy - electron1.energy)
    if (photon|electron1|electron2).energy > threshold:
        particles.pushback(photon|electron1...)
    else:
        energyLossProfile[x+dx] += getEnergyLossProfile(photon|electron1...)
```


cmc under the hood

Important Subclasses

- I3CascadeMCModule: adds muons and scales hadronic cascades, calls splitter for EM cascades
- I3CascadeSplit: performs splitting of EM cascades
 - o I3CascadeParametrization: <1 PeV parameterization</p>
 - o I3CascadeSimulation: >1 PeV simulation tools
 - I3CascadeSimulationCrossSection: calculation of cross-section parameterizations
 - I3MetropolisHastings: sampling of the differential cross sections

