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– Review simulation chain
• Each lead describe their project, status, challenges.

• Discuss strategies (shish kabob)

– DYNSTACK CORSIKA development
• biasing schemes, importance sampling
• IceTop injector replacement

– Code optimizations.
• Memory, CPU profiling.
• DOM oversizing in PPC/ClSim

– Resource prediction
• Memory, runtime, etc.

– Hitspool/DAQ Trigger
– Upgrade/GEN-2 detector simulation
– Review open tickets

Workshop Objectives
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Agenda



Events in icecube

• Air shower detection @ surface

• Penetrating muon detection in 
deep ice

• Events dominated by cosmic ray 
muons : 106 µ for every v that 
interacts in IceCube

• Atmospheric v’s µ

downgoing ν’s upgoing ν’s

ν



tree<I3Particle> 
(direction, position, energy, type)

OM, vector<MCPE>

OM, vector<MCPulse>

OM, vector<DOMLaunches> 
(digitized, PTM waveforms)

I3Particle 
(direction, position, energy)

NPEs

OM, vector<DOMLaunches> 
(digitized, PTM waveforms)

OM, vector<I3RecoPulse>

Simulation Reconstruction
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Generators
‣ Cosmic-ray Air Showers: 

‣ CORSIKA (FORTRAN stand-alone)

‣ corsika-reader: IceTray reader for standard format

‣ CorsikaInjectorService (IceTop)


‣ Muons:

‣ MuonGun:  parametrization of flux of atm. muons under the ice.


‣ Neutrinos:

‣ neutrino-generator: injects neutrinos, propagates them through Earth, 

forces interaction in detector volume.

‣ genie-icetray: detailed simulation of neutrino interactions with GENIE. 

(Used for low-energy simulations) 

‣ LeptonInjector/LeptonWeighter: weighted leptons+weights to 

account for flux models, interaction models, in-earth propagation, etc. 
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Generators
‣ Cosmic-ray Air Showers: 

‣ CORSIKA (FORTRAN stand-alone)

‣ corsika-reader: IceTray reader for standard format

‣ CorsikaInjectorService (IceTop)


‣ Muons:

‣ MuonGun:  parametrization of flux of atm. muons under the ice.


‣ Neutrinos:

‣ neutrino-generator: injects neutrinos, propagates them through Earth, 

forces interaction in detector volume.

‣ genie-icetray: detailed simulation of neutrino interactions with GENIE. 

(Used for low-energy simulations) 

‣ LeptonInjector / NuFSGen (not yet available): weighted 

leptons+weights to account for flux models, interaction models, in-
earth propagation, etc. 
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• Particles are tracked through the atmosphere until they 
undergo reactions with the air nuclei or - in the case of 
instable secondaries - decay. 

• The hadronic interactions at high energies may be 
described by several reaction models alternatively:
• VENUS, QGSJET, and DPMJET (Gribov-Regge theory), 
• SIBYLL (minijet model). 
• neXus, EPOS (combination of QGSJET and VENUS). 
• HDPM (Dual Parton Model).

• Hadronic interactions at lower energies: 
• GHEISHA, FLUKA , or UrQMD  models. 

• For electromagnetic interactions
• Tailored version of EGS4.
• Analytical NKG formulas.

Generators : CORSIKA  
(COsmic Ray SImulations for KAscade)
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https://web.ikp.kit.edu/corsika/physics_description/corsika_phys.pdf


DYNSTACK in CORSIKA

• Replaces CORSIKA’s post-reaction particle stack with a C++11 plugin 

• General API for doing things like the neutrino kill threshold, plus helpful extras 
(take configuration from the steering card, manipulate event headers/trailers, etc) 

• In mainline CORSIKA since 7.56 (modulo typos) 

• Write plugins in C++11 without touching corsika.F, depend only on the standard 
library 

• Build a better CORSIKA for in-ice background simulation.

• Reduce memory and disk requirements for high energy simulations.

Kevin Meagher & Jakob van Santen

Analysis-specific, targeted background simulation
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MuonGun (IceCube implementation of MUPAGE)
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arXiv:0907.5563v1 [astro-ph.IM] 31 Jul 2009 
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1. Calculate total path length inside the Earth using injected 
neutrino geometry. 

a. Separate the total path length into propagation area (SF) 
and detection volume (FE).

2. Define a step length dx[m] using propagation area and step 
number. 

3. For each step: 

a. Calculate a column depth and Earth's density at the step 
point.

b. Calculate a total cross section at the step point.

c. Calculate a probability that the injected neutrino interacts 
within the step. Try Monte-Carlo, decide if an interaction 
happened.

d. If interaction occurred: choose interaction randomly.

i. If CC-interaction is selected with injection particle NuMu 
or NuE, break (event is killed). 

ii. else, generate secondaries and continue to next step.

4. Finish propagation when injected neutrino + secondaries reach 
surface of detection volume (point F), then process a weighted 
interaction.

neutrino-generator (fased out)

• produce a E-γ νµ, νe, ντ with


‣ PRELIM Earth’s density model

‣ parton distribution functions


‣ prop & interaction of neutrinos 
into a weight



Lepton propagation

‣ PROPOSAL: parametrized interactions with 
the medium.  Comp. Phys. Com. 184, 9 (2013), p2070-2090

‣ Stochastic energy losses include:

‣ ionization

‣ electron-pair production

‣ bremsstrahlung

‣ photo-nuclear interaction

‣ decay


‣ GEANT4:  Detailed particle propagation in 
media. https://geant4.web.cern.ch/

‣ 3rd-party G4 library used by CLSim to 

propagate leptons for low-energy 
simulations (CPU-intensive).
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https://doi.org/10.1016/j.cpc.2013.04.001

https://www.sciencedirect.com/science/article/pii/S0010465513001355?via%3Dihub
https://geant4.web.cern.ch/
https://doi.org/10.1016/j.cpc.2013.04.001


Photon Propagation
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• µ energy lost + cascades ➙ photons ➙ p.e.


• Photon propagation : ice properties + PMT response + DOM glass/gel


• Pre-generated lookup splined table : 


• I3PhotonicsHitMaker


• Amplitude and time distribution


• Direct photon tracking


• CLSim


• PPC


• Hybrid photon tracking


• HitMaker + CLSim



Direct photon propagation on GPU

Photon Propagation (PPC, CLSim)



Photon Propagation (PPC, CLSim)

http://icecube.wisc.edu/~ckopper/muon_with_photons.mov

http://icecube.wisc.edu/~ckopper/muon_with_photons.mov


coincident atmospheric shower events in IceCube
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diplopia
(from gr. διπλόος, "double", and ὄψ, ὀπός, "vision") 



—> (MCPEs)



From	distribution	of	
(combined)	MCPEs.	

Outputs	I3MCPulseSeries	
for	each	DOM.

MCPEs

DOMLauncher::	
	PMTResponseSimulator

MCPEs



DOMLauncher: DOM electronics simulation 
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• Core of detector simulation

• Digitization & timing @ MB

• Hard local coincidence (HLC) 

triggers

• Discriminator
• LC-logic
• Digitization
• Simulated effects

• Electronic noise in the digitizers
• Beacon launches (CPU triggered launches)
• The FPGA Clock phase
• RAPcal time uncertainty



Trigger Types
• Simple Multiplicity Trigger (SMT)


• N HLC hits or more in a time window

• Example: InIce SMT8 with N_hits ≥ 8 in 5 µs

• readout window around this captures early and late hits (-4 µs, +6 µs)


• String trigger (a.k.a. Cluster trigger in DAQ-land)

• N HLC hits out of M DOMs on a string in a time window 
• Example: 5 hits from a run of 7 adjacent DOMs in a time window of 1500 ns 

• Volume trigger (a.k.a Cylinder trigger in DAQ-land) 
• simple majority of HLC hits (SMT4) with volume element including one layer of strings 

around a center string 
• cylinder height is 5 DOM-layers (2 up and down from the selected DOM). 

• Slow Particle trigger (SLOP) 
• slow-moving hits along a track 
• lengths of the order of 500µs and extending up to milliseconds 

• Fixed Rate trigger, Minimum Bias trigger, Calibration trigger

J. 
Kell

ey
 - D

AQ

Trigger Simulation



CLSIM

PMT

DomLauncher

TriggerSim

i3SIM 

CORSIKA

PROPOSAL

PolyPlopia

Vuvuzela 
(noise)

} CPU

} GPU

} CPU

The Shish Kabob
(Computing Resource Optimization)

• Optimizing the shish kabob: 
◦ Different parts of the simulation chain have different 

resource requirements. 
◦ CORSIKA is CPU-intensive and requires little 

RAM 
◦ Photon propagation run almost exclusively on 

GPUs 
◦ Detector simulation is CPU bound and requires 

more memory. 
• Things to keep in mind: 

• Running the whole chain on a GPU node will waste 
GPU resources and limit your throughput. 

• Intermediate storage: 
◦ breaking up chain requires transfering/storing 

intermediate files. 
◦ Reduce complexity in workflow 



Example: High-Energy Sterile Neutrino MC Generation 

•

2Spencer N. Axani  

Summary of MC generation for the IC86.2011 analysis
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Generation Level Generation level:  
• MuonInjector 
• Spectrum = E-2  

• Energy = 2E2 to 1E6 GeV 
• NEvents = 1.2e9 events 

Photon Level: 
• DOM efficiency: 1.1979 
• SpiceMie 

DOM efficiency:
0.99

Detector 
Level

L1

L2

NuLevel

h5 output

Energy 
Level

Ice 
Model Abs Scat

It took almost a year to 
produce this MC for the 
IC86.2011 analysis. 

We do not have the 
resources to do this for a 6 
year analysis. 

We need to find ways to 
optimize and cut back!

Spencer N. Axani 


Simulating Systematic Uncertainties



SnowStorm MC for the GlobalFit
IceCube Brussels Meeting 2020 | Diffuse Parallel
Erik Ganster | 05/06/2020

SnowStorm Simulation Chain – SnowStorm

� Based on ³standard´ simulation chain

� Merge of signal+background I3MCTrees before any 
particle or photon propagation
Æ Ensures that all particles get treated/propagated 
with the exact same parameters/settings further on

¾Main SnowStorm simulation step:
¾ Particle (muon) propagation with PROPOSAL
¾ Photon propagation using CLSim

¾Perturbing the ice model properties for chunks of 
frames using the SnowStorm perturber

7

Signal simulation:
LeptonInjector/NuGen

Background sim:
dCORSIKA

Particle and photon
propagation: Snowstorm
(PROPOSAL+CLSim)

Detector
simulation

L1 + L2 processing

Combination:
Polyplopia
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SnowStorm
https://events.icecube.wisc.edu/event/118/contributions/6499/attachments/5362/6082/

DiffuseParallel_Brussels_SnowStormMCGlobalfit.pdf
Erik Ganster

SnowStorm MC for the GlobalFit
IceCube Brussels Meeting 2020 | Diffuse Parallel
Erik Ganster | 05/06/2020

� SnowStorm short: Continuos variation of nuisance
parameters (detector systematics) (blue) instead of
discrete sets for specific values (red)

Why new MC and why SnowStorm?

� Lots of changes/updates since last large-scale MC 
production (at least DiffuseNuMu is based on 2012  
MC):
� New ice models: Spice3.2.1
� New SPE templates
� New software tools
� «

¾Large collaborative effort to produce new MC sets 
using the most up-to-date software and simulation 
tools
� ³SWandard´ signal MC + s\sWemaWic seWs
Æ see talk by Manuel

� SnowStorm MC:
� Novel treatment of detector systematics
� SnowStorm paper
Æ This talk + talk by Ben

¾Use SnowStorm MC with all its features for the 
upcoming GlobalFit

3

https://events.icecube.wisc.edu/event/118/contributions/6499/attachments/5362/6082/DiffuseParallel_Brussels_SnowStormMCGlobalfit.pdf
https://events.icecube.wisc.edu/event/118/contributions/6499/attachments/5362/6082/DiffuseParallel_Brussels_SnowStormMCGlobalfit.pdf
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This project is a collection of scripts, tray segments and IceProd 
modules used in simulation production. The aim is to provide a 
central place with standard segments for running simulation in both 
production and privately.


• Tray Segments: IceTray meta-modules that contain several 
I3Modules with default parameters.


• IceProd modules: basic wrappers around tray segments that 
provide an interface for IceProd.


• Scripts: collection of python scripts used in simulation production


• Examples: The directory simprod-scripts/resources/examples 
contains a collection of example scripts for running IPModules


• Tests: are run on the build-bots to check that the different parts of 
the simulation are not broken with each commit to the software 
repository.

Simprod-Scripts http://software.icecube.wisc.edu/documentation/projects/
simprod_scripts/index.html

http://software.icecube.wisc.edu/documentation/projects/simprod_scripts/index.html
http://software.icecube.wisc.edu/documentation/projects/simprod_scripts/index.html
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flow of experimental and simulation data

data on-line off-line physics analyses
experimental filter @ 

South Pole
level 1 filtering 

(recreate on-line filter)

level 2 processing level 3 processing physics

spade working groupsP&F computing core computingDAQ

working groupsdistributed computing

simulation 
generation

level 3 processing physicslevel 2 processing

level 1 filtering 
(recreate on-line filter)
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Computing Requirements
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• Benchmark individual energy bins 
(E^-1 slope between bins).


• Differential CPU/GPU requirements 
per energy bin.


• Required number of CPU/GPU 
cores/units is determined by the area 
under the curve for a given energy 
interval
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• DOM oversize 2->5


• Improvements in GPU efficiency 
have allowed for better utilization 
with larger DOM oversizing.


Fix in ClSim significantly improves GPU 
utilization in particular for low-energy 
CORSIKA. 

Double buffering mode that reset number 
of parallel events to 1 after a flush and 
caused every other batch to send only 2 
events to the GPU, leading to a dramatic 
drop in efficiency.

Computing Requirements

Original Optimization Improvement 
Factor

CPU 14714 3516 4.18

GPU 4451 336 13.25



Photon Propagation

Energy dependence/Distance of source to DOM: 
• In general, it’s been determined that the problems 

derived from DOM oversizing are not dependent on 
energy but do get worst at smaller distances.  

• Chris Weaver presented a study of the PE timing 
distributions for various DOM oversize factors at 
different distances.

DOM oversizing



Photon Propagation 

• An alternative approach was discussed during the workshop: 
• Propagate photon "bundles" until they reach an oversize sphere at 

which point you branch and propagate each photon individually.  
• This is in essence the opposite of the current oversizing but should 

also save on GPU computations since you only need to propagate a 
fraction of photons until they reach a distance R away from a DOM. 

DOM oversizing in PPC/ClSim 

Current “pancake” DOM oversizing Proposed “bundle” oversizing
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Resource Utilization

• Memory foot print of simulations has a large variance


• Some jobs require 60+  GB of RAM


• Typically, one or two high energy events (out of thousands) will be 
responsible for the large memory.
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Memory Usage

194GB

??

CPU

Resource Prediction/Optimization
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Simulation Production

Tokio

• You will typically not be generating you own simulation.

• Simulating IceCube takes many computing cycles 

• The collaboration utilizes distributed computing resources from around the world

• You can find information on generated datasets in

• https://grid.icecube.wisc.edu/simulation/DashBoard/

• Simulations are stored in “Data Warehouse”

• In-ince: /data/sim/IceCube/[YEAR]

• IceTop: /data/sim/IceTop/[YEAR]

https://grid.icecube.wisc.edu/simulation/DashBoard//simulaton/Dashboard

