

Physics Analyses in IceCube

Kayla Leonard

Kayla Leonard

Outline

1. Summary of Existing Analyses in IceCube

2. How To Create your own Analysis in IceCube

IceCube Working Groups

Analysis Working Groups:

- Neutrino Sources
- Diffuse
- Oscillations
- BSM
- Cosmic Rays
- Supernova

Technical Working Groups:

- Reconstruction & Systematics
- Calibration
- Simulation
- Software
- Realtime / ROC

Neutrino Sources Working Group

- High Energy Neutrinos are produced in intense comic accelerators in our Universe.
- The Neutrino Sources Working Group tests various theories to see if there are "hot spots" or clusters of neutrinos
- Clusters can be in both space and time

	Spatial prior	Time integrated	Time dependent
Skymap	None	 10 yr time integrated (all-sky scan) 	• All-sky single flare fit
Singe source search	Single point	TXS archivalAnita archivalHydrangea archival	TXS follow-upAnita follow-upHydrangea follow-up
Catalog search	List of points	 10 yr time integrated (catalog search) 	• Blazar flare (one flare per source)
Stacking search	List of points	Blazar stacking searchPulsar wind nebulae	 Multi-flare blazar (multiple flares per source)
Template	Region of sky	• Galactic Plane	 Non-poissonian template fit Gravitational Wave

Kayla Leonard

	Spatial prior	Time integrated	Time dependent
Skymap	None	 10 <u>yr</u> time integrated (all-sky scan) 	• All-sky single flare fit
Singe source search	Single point	 1XS archival Anita archival Hydrangea archival 	 TXS follow-up Anita follow-up Hydrangea follow-up
Catalog search	List of points	• 10 <u>yr</u> time integrated (catalog search)	• Blazar flare (one flare per source)
Stacking search	List of points	 Blazar stacking search Pulsar wind nebulae 	 Multi-flare blazar (multiple flares per source)
Template	Region of sky	Galactic Plane	• Gravitational Wave

All-sky scan

 Look for any hotspot on sky

Kayla Leonard

17 June 2020 - IceCube Bootcamp - Virtual

	Spatial prior	Time integrated	Time dependent
Skymap	None	 10 <u>yr</u> time integrated (all-sky scan) 	• All-sky single flare fit
Singe source search	Single point	 TXS archival Anita archival Hydrangea archival 	 TXS follow-up Anita follow-up Hydrangea follow-up
Catalog search	List of points	 10 <u>yr</u> time integrated (catalog search) 	• Blazar flare (one flare per source)
Stacking search	List of points	 Blazar stacking search Pulsar wind nebulae 	 Multi-flare blazar (multiple flares per source)
Template	Region of sky	• Galactic Plane	Gravitational Wave

Galactic Plane Template

• Use neutrinos in galactic plane region to test KRA-gamma model

	Spatial prior	Time integrated	Time dependent
Skymap	None	 10 <u>yr</u> time integrated (all-sky scan) 	• All-sky single flare fit
Singe source search	Single point	 TXS archival Anita archival Hydrangea archival 	 TXS follow-up Anita follow-up Hydrangea follow-up
Catalog search	List of points	 10 <u>yr</u> time integrated (catalog search) 	• Blazar flare (one flare per source)
Stacking search	List of points	 Blazar stacking searc Pulsar wind nebulae 	 Multi-flare blazar (multiple flares per source)
Template	Region of sky	Galactic Plane	• Gravitational Wave

Multi-flare Blazar Stacking

Look for clustering in *time* of events in a blazar catalog

	Spatial prior	Time integrated	Time dependent
Skymap	None	 10 <u>yr</u> time integrated (all-sky scan) 	• All-sky single flare fit
Singe source search	Single point	 TXS archival Anita archival Hydrangea archival 	 TXS follow-up Anita follow-up Hydrangea follow-up
Catalog search	List of points	 10 <u>yr</u> time integrated (catalog search) 	 Blazar flare (one flare per source)
Stacking search	List of points	 Blazar stacking search Pulsar wind nebulae 	Multi-flare blazar (multiple flares per source)
Template	Region of sky	• Galactic Plane	• Gravitational Wave

Realtime

- Alert: We see a high energy neutrino that we want other telescopes to follow up
- Follow-up: Source is a single point that telescopes alerted us to
- GW follow-up: Source is an extended contour from LIGO gravitational wave

	Spatial prior	Time integrated	Time dependent
Skymap	None	 10 <u>yr</u> time integrated (all-sky scan) 	• All-sky single flare fit
Singe source search	Single point	 TXS archival Anita archival Hydrangea archival 	 TXS follow-up Anita follow-up Hydrangea follow-up
Catalog search	List of points	 10 <u>yr</u> time integrated (catalog search) 	 Blazar flare (one flare per source)
Stacking search	List of points	 Blazar stacking search Pulsar wind nebulae 	Multi-flare blazar (multiple flares per source)
Template	Region of sky	• Galactic Plane	• Gravitational Wave

Realtime

- Alert: We see a high energy neutrino that we want other telescopes to follow up
- Follow-up: Source is a single point that telescopes alerted us to
- GW follow-up: Source is an extended contour from LIGO gravitational wave

17 June 2020 - IceCube Bootcamp - Virtual

Kayla Leonard

	Spatial prior	Time integrated	Time dependent
Skymap	None	• 10 <u>yr</u> time integrated (all-sky scan)	• All-sky single flare fit
Singe source search	Single point	 TXS archival Anita archival Hydrangea archival 	 TXS follow-up Anita follow-up Hydrangea follow-up
Catalog search	List of points	 10 <u>yr</u> time integrated (catalog search) 	 Blazar flare (one flare per source)
Stacking search	List of points	 Blazar stacking search Pulsar wind nebulae 	Multi-flare blazar (multiple flares per source)
Template	Region of sky	• Galactic Plane	• Gravitational Wave

GW GW170817 C EM EM Neutrinos TXS 0506+056

Realtime

- Alert: We see a high energy neutrino that we want other telescopes to follow up
- Follow-up: Source is a single point that telescopes alerted us to
- GW follow-up: Source is an extended contour from LIGO gravitational wave

Kayla Leonard

17 June 2020 - IceCube Bootcamp - Virtual

Diffuse Working Group

- Neutrinos are produced all around the Universe.
- It appears as an isotropic flux here at Earth.
- The Diffuse Working Group tries to measure the Diffuse Astrophysical Neutrino spectrum.

- Astrophysical Diffuse Spectrum
- Flavor ratio
- Tau neutrino identification

• Astrophysical Diffuse Spectrum

- Flavor ratio
- Tau identification

What is the spectrum of diffuse astrophysical neutrinos?

$$\mathsf{N} = \mathbf{\phi} * (\mathsf{E}/\mathsf{E}_0)^{-\gamma}$$

Kayla Leonard

Astrophysical Diffuse Spectrum

- Astrophysical Diffuse Spectrum
 Flavor ratio
- Tau identification

Tau particles decay quickly. If they are created and decay within the detector can we see both cascades?

Length of Track = 50 m per PeV * Energy

Kayla Leonard

Oscillations Working Group

- If we know the what flavor a it was created as, we can calculate the probability of it being measured as a certain flavor at another point in time.
- Probability of starting as one flavor and measured as different flavor:

$$P_{lpha
ightarrow eta, lpha
eq eta} = \sin^2(2 heta) \sin^2\left(rac{\Delta m^2 L}{4E}
ight)$$

• N(ν_{μ} detected) = P($\nu_{\tau} \rightarrow \nu_{\mu}$) * N(ν_{τ} created)

- Atmospheric oscillation parameters
- Tau neutrino appearance
- Neutrino mass ordering
- Non-standard interactions
- Sterile neutrinos

- Atmospheric oscillation parameters
- Tau neutrino appea FC 68% Neutrino mass orde $\overrightarrow{\Delta}_{\chi^{2}}$ Non-standard inter IC2017 [NO] (this work) SK IV 2015 [NO] 3.4 MINOS w/atm [NO] NOvA 2017 [NO] T2K 2017 [NO] 3.2 Sterile neutrinos $\Delta m^2_{32} | \; (10^{-3} \, {
 m eV}^2$ 3.0 2.8 FC 68% What are the parameters 2.6that describe neutrino 2.42.2oscillations? 2.090% CL contour 0.5 0.40.6 $\Delta \chi^2$ $\sin^2(\theta_{23})$ $P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\right)$

- Atmospheric oscillation parameters
- Tau neutrino appearance
- Neutrino mass ordering
- Non-standard interactions

Do we see the number of tau neutrinos that we expect given the 3-flavor model?

- Tau neutrino appearance
- Neutrino mass ordering
- Non-standard interaction

8

4

2

log

linear

 $2 \cdot (LLH-LLH_{min})$

Normal Ordering

Inverted Ordering

- Atmospheric oscillation parameters
- Tau neutrino appearance
- Neutrino mass ordering
- Non-standard interactions
- Sterile neutrinos

Do we see evidence for a 4th neutrino state and what would it's oscillation parameters be?

Beyond the Standard Model (BSM)

- The Standard Model with the 3-Flavor Model of Neutrino Oscillations is widely accepted as correct.
- What if there's some other new physics out there?

- Diffuse Dark Matter
- Dark Matter from the Galactic center
- Dark Matter from the Sun
- Magnetic Monopoles
- Sterile Neutrino Decay

• Diffuse Dark Matter

17 June 2020 - IceCube Bootcamp - Virtual

- Diffuse Dark Matter
- Dark Matter from the Galactic center
- Dark Matter from the Sun (Solar WIMP)

- Diffuse Dark Matter
- Dark Matter from the Galactic center

- Diffuse Dark Matter
- Dark Matter from the Galactic ce
- Dark Matter from the Sun
- Magnetic Monopoles
- Sterile Neutrino Decay

Do we see an excess or deficit of neutrinos that could be due to decaying sterile neutrinos?

Kayla Leonard

17 June 2020 - IceCube Bootcamp - Virtual

Cosmic Ray Working Group

- When cosmic rays hit Earth's upper atmosphere, they produce showers of pions, kaons, muons, neutrinos, etc.
- There is a detector situated on top of IceCube called IceTop that is designed to look for these air showers.

- Cosmic ray spectrum & composition
- Cosmic ray anisotropy
- Sun/moon shadow
- Seasonal variations

Cosmic ray spectrum & composition

17 June 2020 - IceCube Bootcamp - Virtual

- Cosmic ray spectrum & composition
- Cosmic ray anisotropy
- Sun/moon shadow

- Cosmic ray spectrum
- Cosmic ray anisotropy
- Sun/moon shadow
- Seasonal variations

Kayla Leonard

17 June 2020 - IceCube Bootcamp - Virtual

Slide 33

- Cosmic ray spectrun
- Cosmic ray anisotropy
- Sun/moon shadow
- Seasonal variations

Supernova Working Group

- Supernova neutrinos are at a very low energy compared to what IceCube normally sees.
- Therefore in a supernova, we would expect an overall rise in the "noise" rate of the detector, rather than identifying many individual events

Supernova Early Warning System

Outline

- 1. Summary of Existing Analyses in IceCube
- 2. How To Create your own Analysis in IceCube

Pipeline

How to Publish an IceCube Paper in 27 Steps:

https://docushare.icecube.wisc.edu/dsweb/Get/Document-85146/

Kayla Leonard

17 June 2020 - IceCube Bootcamp - Virtual

Thanks! Questions?