Calibration and the Ice Model

Dawn Williams

University of Alabama

IceCube Bootcamp 2020

IceCube Detector references

- The IceCube Neutrino Observatory: Instrumentation and Online Systems
 - <u>https://arxiv.org/abs/1612.05093</u>
- Calibration and Characterization of the IceCube Photomultiplier Tube
 - https://arxiv.org/abs/1002.2442
- The IceCube Data Acquisition System: Signal Capture, Digitization, and Timestamping
 - <u>https://arxiv.org/abs/0810.4930</u>
- Measurement of South Pole ice transparency with the IceCube LED calibration system
 - <u>https://arxiv.org/abs/1301.5361</u>
- Evidence of Optical Anisotropy of the South Pole Ice
 - https://arxiv.org/pdf/1309.7010.pdf
- Photon Propagation through Birefringent Polycrystals
 - https://internal-apps.icecube.wisc.edu/reports/details.php?type=report&id=icecube%2F201902001
- Energy Reconstruction Methods in the IceCube Neutrino Telescope
 - <u>https://arxiv.org/abs/1311.4767</u>

Acknowledgment

- The ice model is developed in the IceCube Calibration working group
- Much of the material in this presentation comes from the work of Ryan Bay, Dima Chirkin, Martin Rongen and Chris Wendt

IceCube

IceCube Strings

IceCube Digital Optical Module (DOM)

Every DOM in IceCube is equipped with flasher LEDs

This gives us a controlled light source at every location in the detector

Signal in a Photomultiplier Tube

DOM Output: single photoelectron

This is what we record when light hits the DOM: a waveform

DOM output: complex waveform

Waveforms to pulses

Pulses in a PMT

- Pre-pulses: result of photons striking first dynode instead of photocathode
- Late pulses: result of photoelectrodes backscattered off the first dynode
- Afterpulses: result of ions created near the last dynode that accelerate back to the photocathode and produce multiple photoelectrons

Pulses in a PMT

- Pre-pulses: result of photons striking first dynode instead of photocathode
- Late pulses: result of photoelectrodes backscattered off the first dynode
- Afterpulses: result of ions created near the last dynode that accelerate back to the photocathode and produce multiple photoelectrons

Pulses in a PMT

- Pre-pulses: result of photons striking first dynode instead of photocathode
- Late pulses: result of photoelectrodes backscattered off the first dynode
- Afterpulses: result of ions created near the last dynode that accelerate back to the photocathode and produce multiple photoelectrons

Noise

Distribution of time between hits for noise events – important for low energy events

An IceCube neutrino ("Big Bird")

How do we know how much energy Big Bird has?

How do we know where it comes from?

The ideal picture

The ideal picture

The ideal picture

The ice model

- The ice is as much a part of the detector as the DOMs!
- The ice is our calorimeter, support structure and shielding
- For a complete history of the ice model see here https://wiki.icecube.wisc.edu/index.php/Ice_models

Calibration: from photon to data

Propagation through ice

We need to know how light propagates in ice. Major propagation processes are **absorption** and **scattering**

lce vs. water

- This type of experiment can be done in water (DUMAND, ANTARES/NEMO/NESTOR → KM3NET, Baikal → GVD) or ice (AMANDA → IceCube)
- Water has good scattering properties, poor absorption properties
- Ice has good absorption properties, poor scattering properties
- Scattering affects direction, absorption affects energy
- Ice has practical advantages over water for detector construction, IceCube was the first cubic kilometer neutrino detector

The ice is complex...

- No bubbles in undisturbed ice at IceCube depths (clathrates)
- Layers of dust cause depth-dependent scattering and absorption
- The dust layers are not horizontal...
- And the scattering is anisotropic...
- And the melted and refrozen ice in the holes has a bubble column in the center...

What causes scattering in ice?

6/16/20

23

Why not Greenland? Ask the IceCube DustLogger

LGM = Last Glacial Maximum, 26.5 kya

MIS4 = Marine Isotope Stage 4, 71 kya

IceCube events and "The Dust Layer"

Effects of the dust layer: IC-190331

Thomas Kintscher

Absorption in South Pole Ice

Dust layer tilt at the Pole

Why not drill deeper? Is shear a problem?

The hole ice

Some DOMs are less equal than others because of local effects in the hole ice.

Albrecht Karle

Anisotropy TEL South Pole Station [ш] ₅₀₀ ≻ # string Grid North IceTop tank DeepCore string Ice Layer tilt direction 225° SW 400 1.4 300 Ice flow direction 41° NW 200 Relative Charge 9.0 Charge 1.4 1.7 100 -150 -100-50 50 100 0 -100 -200 Less attenuation 41° NW -300 0.8 -400 0.6 -500 -50 0 50 Angle (Degrees) -150 -10050 100 500 600 -600 -500 -400 -300 -200 -100 0 100 200 300 400 X [m]

What causes the anisotropy in the ice properties?

150

150

90E

Modeling anisotropy

Until recently we thought the anisotropy might be caused by the shape/orientation of the dust grains in ice, but our current thinking is that the anisotropy is caused by birefringence due to the crystal structure of the ice itself.

Our Understanding of IceCube's ice

In Reality

In Reality

Sources of light in the ice

- The "dust logger" (deployment only)
- Occasional glowing due to the DOM HV supply
- Dark noise mostly single hits, mostly in the glass, radioactive decay, scintillation (hundreds of Hz per DOM)
- Cosmic ray muons (several kHz)
- Products from neutrino interactions
- Artificial light sources
 - LED flashers
 - Laser "standard candle" 😵
 - Laser lighting for the "Swedish camera" (R.I.P.)

Calibration: from photon to data

Propagation through ice

We use flashers:

- 1) To verify that DOMs are properly connected and functioning during commissioning
- 2) To verify the detector geometry
- 3) To study the optical properties of the ice
- 4) To study the response of the DOMs themselves

Flasher wiki references

- <u>https://wiki.icecube.wisc.edu/index.php/Flashers</u>
- https://wiki.icecube.wisc.edu/index.php/CDOM_Info

LED Flasher Board

12 LEDs

Arranged in pairs, evenly spaced 60° apart

1&7, 2&8, 3&9, 4&10, 5&11, 6&12, going clockwise seen from above

1-6 are tilted, upward at about 45° from horizontal

7-10 are horizontal

Flasher properties

• The vast majority of IceCube LEDs are ETG-5UV405-30, nominally 405 nm wavelength, actually 399 nm, FWHM of 14 nm

IceCube bootcamp 2020 - Calibration - Williams

cDOMs

- 8 DOMs each on string 14 and string 79 have multiwavelength flashers called cDOMs
- See the CDOM wiki for the appropriate masks
- For the remainder of this lesson we will use the standard 400 nm flashers

Flasher properties: Angular emission profile (beam width)

- Nominal beam width is 30° in air
- In ice, accounting for refraction from air to glass and glass to ice, the beam width is 10°
- Can be modeled as a 2-D Gaussian with $\sigma = 10^{\circ}$ in both directions

Beam Pattern

Flasher operating parameters

Parameter	Allowed values	Description
string	1 - 86	String where flashing DOM is located
DOM	1-60	Flashing DOM number
brightness	0 - 127	LED driver current intensity, up to 240 mA
width	0 - 127	2x duration of LED current pulse, in ns
mask	0001 - 0FFF	Hex representation of bitmask controlling which LEDs flash
rate	0 - 610	Rate of LED flashes in Hz

Flasher operation: String and DOM

- Multiple flashers can be run simultaneously
- The data acquisition system can withstand at least 3x the normal background rate from muons (~70 bright flashing DOMs simultaneously)
- A typical run might have a few to ~30 flashers simultaneously
- Neighboring flashers on the same string cannot run simultaneously
- Old DOMs (produced in 2004 and 2005) have "afterburst" properties
- Flashers cannot be synchronized using the current firmware

Running flashers: brightness and width

- Maximum photon output per LED is 1.17e10 photons per flash
- With all 12 LEDs running this is about equal to a 500 TeV cascade
- The brightness and width parameters determine the photon output
 - Width: duration of driver current, effectively 10-70 ns
 - Brightness: amplitude of driver current, up to 240 mA

47

6/16/20

Running flashers: mask

The 12 LEDs can be run in an combination. Each LED is controlled by a bit, and the "mask" is the hex representation of the bits

Example: flash LED 7 only

HEX mask is 0064

Running flashers: mask

The 12 LEDs can be run in an combination. Each LED is controlled by a bit, and the "mask" is the hex representation of the bits

Example: flash all tilted LEDs

HEX mask is 003f

Running flashers: mask

The 12 LEDs can be run in an combination. Each LED is controlled by a bit, and the "mask" is the hex representation of the bits

Example: flash all horizontal LEDs

HEX mask is OfcO

Running flashers: rate

- Maximum rate is 610 Hz, lower rates are 610 Hz divided by a power of
 2
- The setting in the configuration is an integer, the actual value of the rate is the next lowest value to that integer which is 610 divided by a power of 2
- So for example if the rate setting is 2, the actual rate is 1.191 Hz = 610 Hz/2⁹

Flasher data processing

neighboring DOMs from a flasher.

1.02 Photoelectrons

_

6/16/20

Flasher data and the ice model

History of flasher data and the ice model

Timeline

AM	ANDA ice models:			model error			
bulk, f125, mam, mamint, stdkurt, sudkurt, kgm,							
	millennium (published 2006) → AHA (2007)						
lceC	Cube ice models:						
	WHAM	(2011)		42%			
	SPICE 1	(2009)		29%			
	SPICE 2, 2+, 2x, 2y	(2010)	added ice layer tilt				
	SPICE Mie	(2011)	fit to scattering function	29%			
	SPICE Lea	(2012)	fit to scattering anisotropy	20%			
	SPICE (Munich)	(2013)	7-string, LED unfolding	17%			
	SPICE ³ (CUBE)	(2014)	llh fixes, DOM sensitivity fits	11%			
	SPICE 3.0	(2015)	improved RDE, ang. sens. fits	10%			
	SPICE 3.1, 3.2	(2016)	85-string, correlated model fit	: <10%			
	SPICE HD, 3.2.2	(2017)	direct HI and DOM sens., cabl	e, DOM tilt			
	SPICE EMRM	(2018)	absorption-based anisotropy	single			
	SPICE BFR	(2019)	birefringence-based anisotrop	y LEDs			

Model error (precision in charge prediction): <10% Extrapolation uncertainty: 13% (sca) / 15% (abs) Linearity: < 2% in range 0.1 ... 500 p.e.

The future: calibration in the IceCube Upgrade

Device	IceCube	IceCube Upgrade	Note
Flasher LEDs in DOMs	All DOMs	All DOMs	Upgrade spacing will be below a scattering length
Cameras	1 camera, not onboard DOM	Onboard DOMs	Camera has been very useful in informing us about hole ice conditions
Standalone light sources	2 laser "standard candles"	POCAM and Pencil Beam, 24 and 10 respectively	POCAM and Pencil beam designed to be isotropic/multidirectional and probe hole ice and scattering function respectively
Acoustic sensors	None	Onboard DOMs	Cross-check geometry measurements, R&D for extended detector calibration
Inclinometers	50	All DOMs	Mainboard mounted off the shelf component

Light sources onboard the modules: LED flashers

mainboard

Calibration board

cameras

flashers

Definitely want

(Blue circles are cameras)

Desired if waistband and integration allows

Only if orange spaces not possible and integration allows

6/16/20

IceCube bootcamp 2020 - Calibration - Williams

mDOM: 2 outward cameras, 1 downward

D-egg: 3 outward cameras

Backup

- DOM = digital optical module
 - Basic sensor unit
- String = cable with 60 DOMs
 - 86 strings in final detector
- IceTop = surface detector
- InIce = all strings
- DeepCore = closely spaced center strings

- Photomultiplier tube or PMT = light detector
- HV = high voltage
- Photoelectron: an electron ejected from a metal surface in the PMT by a photon
- Mainboard = digitizing electronics
- ATWD = analog transient waveform digitizer
 - 128 samples, 3 ns per sample
- FADC = fast analog to digital converter
- Waveform = digitized current pulse
- Timestamp = time a waveform was recorded
- Flashers = onboard LEDs for calibration

IceCube PMT

Fig. 4.1 Schematic of a photomultiplier tube.

- Hit = single DOM sees light (threshold = 0.25 PE)
- Local coincidence = neighboring DOMs see light within a certain time window
- Hard Local Coincidence (HLC) = no information is sent on unless local coincidence condition is met
- Soft Local Coincidence (SLC) = only minimal information is sent on unless local coincidence condition is met
- These decisions are all made in the ice by the onboard electronics

- Trigger = multiple DOMs hit in a certain pattern or time window
 - Simple majority (SMT) = some number of DOMs hit, currently 8, i.e. SMT8
 - Calibration trigger = flashers
 - Minimum bias/minbias trigger = capture whatever is in the detector regardless of pattern
 - Many others

- Event = all information captured within a certain time window around a trigger
 - An event may have multiple triggers
- Event Builder = software that constructs events
- Processing and filtering (PNF) = software that runs online data reduction
- Online = realtime data processing
- Offline = non-realtime data processing

