IceCube Event Reconstruction

Bunheng Ty 16 June 2020 ty@wisc.edu

Acknowledgement

Many slides adapted from

Event Reconstruction, Bootcamp 2019

Thanks, Tianlu

Detection Principles

High energy particles interact with the ice, producing Cherenkov photons

DOMs detect photons

Detection Principles

High energy particles interact with the ice, producing Cherenkov photons

θ

α

μ

DOMs detect photons

Reconstruction:

Piecing information from the DOMs for

- 1. energy
- 2. direction
- 3. topology

From voltage signal to photon counts

PMT + wavedeform = photon counter

Wavedeform

- SPE template waveform represents response to SPE
- Waveform is a superposition of SPEs
 - → Unfold the waveform using a vector of time-shifted SPE templates as a basis

Formulate the unfolding as a least-squares problem

IceCube Event Topologies

CC muon neutrino

 $\nu_\mu + N \to \mu + X$

track (data)

angular resolution ~ 0.5° energy resolution ~ x2 NC or CC electron neutrino

$$\nu_e + N \to e + X$$
 $\nu_x + N \to \nu_x + X$

shower (data)

angular resolution ~ 10° energy resolution ~ 15% CC tau neutrino

 $\nu_\tau + N \to \tau + X$

"double-bang" (simulation)

~2 expected in 6 years

Track vs. Cascade

- Line-like emission vs. point-like emission
- A track is due to a muon(s).
- A cascade can be due to anything:
 - Neutrino DIS with a nucleus
 - Muon stochastic loss
- Only rarely that an IceCube event contains no track. So track reconstruction is important, even if only for the purpose of background rejection.

<u>Linefit</u>

- A relatively simple but robust and fast track reconstruction algorithm
 - Minimize sum of square distances, muon to DOMs

mally, assume there are N hits; denote the position and time of the *i*th hit as \vec{x}_i and t_i , respectively. Let the reconstructed muon track have a velocity of \vec{v} , and let the reconstructed track pass through point \vec{x}_0 at time t_0 . Then, linefit reconstruction solves the *least-squares* optimization problem:

$$\min_{t_0, \vec{x}_0, \vec{v}} \sum_{i=1}^{N} \rho_i(t_0, \vec{x}_0, \vec{v})^2, \tag{1}$$

(2)

where

$$\rho_i(t_0, \vec{x}_0, \vec{v}) = \|\vec{v}(t_i - t_0) + \vec{x}_0 - \vec{x}_i\|_2.$$

- Technically a least square problem, but analytically solvable.
 - So just plug in numbers into the <u>formulas</u>

Challenge: use the whole pulse series

• Given an arbitrary cascade/track event of $(E, t, \vec{r}, \theta, \phi)$, what is the expected PE(t) on a DOM at position (x, y, z)?

Expected photon flux at a DOM

- Analytical approximation: <u>Pandel functions</u>
 - Probably would work well in water
 - Unfortunately, our medium is inhomogeneous ice
 - <u>SPEfit</u>, <u>CscdLlh</u>, and some others...

Our modern solution

Monte Carlo simulation: ppc

A Track simulation

nd sibration of the second second

muons: long paths in the detector $ightarrow {f track}$

A Cascade Simulation

electrons/hadrons: shower of light \rightarrow **cascade**

Reconstruction

- Simulation: $(E, t, \vec{r}, \theta, \phi) \rightarrow PE(t, x, y, z)$
- Reconstruction: $(E, t, \vec{r}, \theta, \phi) \leftarrow PE(t, x, y, z)$
 - A solution: keep simulating different $(E, t, \vec{r}, \theta, \phi)$'s until the resulting expected PE(t, x, y, z) at all DOMs match well with the data. (ideally, to within the statistical, poissonian limit)

Reconstruction

- <u>Direct Fit</u> : reconstruction by running ppc a **huge** number of times
 - Resource intensive, slow, impractical for processing a large set of events

• <u>Millipede</u>: similar in spirit, but simulations are precomputed, stored in (and others) lookup tables.

These tables are known as "photon tables".

They contain PE(t, x, y, z) to all possible $(E, \vec{r}, \theta, \phi)$'s

(not really, E=1GeV only, and grid values for (z, θ, ϕ) with anything in between to be interpolated)

Cascade vs track skymap

DirectFit with <u>directional PDFs</u>

IceCube Event Topologies

CC muon neutrino

 $\nu_\mu + N \to \mu + X$

track (data)

angular resolution ~ 0.5° energy resolution ~ x2 NC or CC electron neutrino

$$\nu_e + N \to e + X$$
 $\nu_x + N \to \nu_x + X$

shower (data)

angular resolution ~ 10° energy resolution ~ 15% CC tau neutrino

 $\nu_\tau + N \to \tau + X$

"double-bang" (simulation)

~2 expected in 6 years

Ice Model Uncertainties

• Our most sophisticated reconstructions rely directly on our simulations, which can vary greatly with the Ice model.

• Our ice model is a work in progress, getting better with time.

 \rightarrow Cascade directional reconstruction limited by our simulation model

Ice affects cascade reconstruction

Local effects

Hole-ice

• Refrozen central column with high scattering

DOM orientation

- Thick, support cable may impede direct photons if vertex is nearby
- A few DOMs may not be perfectly horizontal

Summary and Future Outlook

- IceCube reconstruction is determining event's energy, direction, topology.
- Simple to complicated, depending on how much of the pulse series we want to used.
- Full cascade reconstruction is challenging, due to the ice medium.
 - It is a miracle that the ice is that clear in the first place.
 - Improve the ice model to improve reconstruction
- Future (cascade reconstructions): deep neural network
 - DNN offers potential direct fit performance, while fast enough to be practical for processing a large data set.