
Intro to IceTray
Madison Bootcamp 2020

Alex Olivas

IceTray : The Definitive Guide

If you see something, say something.
http://code.icecube.wisc.edu/projects/icecube/newticket

The topic of the #software
channel will always point to the
documentation builds.

https://docs.icecube.aq
(100+ projects through L2/L3)

Now contains builds of the trunk
as well as past releases.
(Thanks D. Schultz!)

http://code.icecube.wisc.edu/projects/icecube/newticket
https://docs.icecube.aq

The Ticketing System http://code.icecube.wisc.edu

Creating a new ticket is
very easy.

All ticket changes are
reported in #software on
Slack.

Please, please, please file a
ticket if you find issues
(including documentation).

We can't fix problems we
don't know about.

http://code.icecube.wisc.edu

The Ticketing System http://code.icecube.wisc.edu

One and only one hard and fast rule:

Do not submit tickets as 'icecube'

Fill in the fields as best you can.

Convention: In the description, it's
helpful, but not necessary, to start
with the project name in square
brackets.

http://code.icecube.wisc.edu

IceTray : A Very Brief Introduction

I3Tray

I3Module I3Module I3Module
I3Frame I3Frame

IceTray is the framework whose responsibility is to manage
interactions between user-defined I3Modules, passing
I3Frames from module to module.

● I3Frame - Data Container
● I3Module - Take data out of the frame, process, add data to the frame.

IceTray : The I3Frame and I3Module

I3Tray

I3Module I3Module I3Module
I3Frame I3Frame

I3Frame - Dictionary with string keys and "frame objects" values.

*Trivia : Unlike true python dictionaries, which can store objects of any type, I3Frames can only
contain objects which inherit from I3FrameObject. Driven by C++ design.

*Trivia : I3Frame is actually a C++ class which manages map<string, shared_ptr<I3FrameObject>>

Nearly all I3FrameObjects are collected in three projects: dataclasses, simclasses, recclasses.
● dataclasses - https://docs.icecube.aq/combo/trunk/projects/dataclasses/index.html
● simclasses - https://docs.icecube.aq/combo/trunk/projects/simclasses/index.html
● recclasses - https://docs.icecube.aq/combo/trunk/projects/recclasses/index.html

https://docs.icecube.aq/combo/trunk/projects/dataclasses/index.html
https://docs.icecube.aq/combo/trunk/projects/dataclasses/index.html
https://docs.icecube.aq/combo/trunk/projects/dataclasses/index.html

IceTray : I3Context and I3Services

I3Tray

I3Module I3Module I3Module
I3Frame I3Frame

I3Context
● I3ServicePtr
● I3ServicePtr
● I3ServicePtr

I3Context - A dictionary of I3Services.
I3Service - "Global" object that’s
configurable at runtime in a python script.

When to use a proper I3Service stored in the I3Context?
● "Global" object used by several (lots) I3Modules

IceTray : RNG Service Example

I3Tray

I3Module I3Module I3Module
I3Frame I3Frame

I3Context[“I3RandomService”] = I3RandomServicePtr
● I3SPRNGRandomServicePtr
● I3GSLRandomServicesPtr
● I3MT19937ServicePtr
● I3MyFavoriteRandomServicePtr

User can choose any random service they want at runtime and
no downstream module needs to change.

IceTray : The Frame-Stream-Stop Model

I3Frame Types
I3Frame::TrayInfo
I3Frame::Geometry
I3Frame::Calibration
I3Frame::DetectorStatus
I3Frame::Physics
I3Frame::DAQ

I3Module ‘Stops’

I3Module::Geometry
I3Module::Calibration
I3Module::DetectorStatus
I3Module::Physics
I3Module::DAQ

Frames come in different flavors

Stops are methods that
correspond to a frame type.

IceTray : The Frame-Stream-Stop Model

IceTray

I3Module.
Physics(frame):
 # add code here that pulls
 # data from the frame, does
 # something interesting and
 # puts data back in the frame

I3Frame.Physics
I3Module.
Physics(frame):
 # add code here that pulls
 # data from the frame, does
 # something interesting and
 # puts data back in the frame

When a Physics frame goes by the Physics methods
of all downstream modules get called and the frame
passed to it.

PyTray : IceTray in Working Pseudo-Code

I3Service and I3FrameObject serve simply
as a base class to mimic C++ design and
behavior.

I3Frame essentially wraps a dict.

Only objects that inherit from I3FrameObject
can be added to the I3Frame.

PyTray : IceTray in Working Pseudo-Code

PyTray : IceTray in Working Pseudo-Code

Classes that inherit from I3Service
go in the tray's context.

PyTray : IceTray in Working Pseudo-Code

I3Modules and function objects are
created with a context and
appended to an internal private list.

PyTray : IceTray in Working Pseudo-Code

First call the configure method of each module.
The order shouldn't matter.

In an infinite loop, grab the first frame from the
"Driving Module" The driving module returns
None when it's done.

Depending on the "frame type" call the
corresponding stop, in the order they were
added to the tray.

If any 'Stop' returns False go to the next frame

If it's a user-defined frame (e.g. 'M','S','W',
etc...) just call the Default method.

PyTray : IceTray in Working Pseudo-Code

Classes that inherit from I3Module can
choose to implement any 'Stop' they want.

On construction (by I3Tray) modules will
receive and have access to the context.

Configure is called just before execution in
I3Tray.Execute.

Return True if you want the next module to
be able to process the frame as well.

PyTray : IceTray in Working Pseudo-Code

IceTray : I3FrameObjects

I3MCTree "is-a" (i.e. inherits from)
I3FrameObject, found in dataclasses.

A list of numbers is not an I3FrameObject.

IceTray : I3FrameObjects

IceTray : Creating Typed Frames

IceTray : The Frame-Stream-Stop Model

Frame Hierarchy - Generally expected in this order: GCDQP
Frame Mixing - Example: All objects from G, C, D, Q are accessible from P-frames.
Frame Packets - QPPPPP P-frames following Q-frame "belong" to the Q-frame.
I3PacketModule - Allows you to process a vector of frames (i.e. "packet").

IceTray

I3Module.
Physics(frame):
 # add code here that pulls
 # data from the frame, does
 # something interesting and
 # puts data back in the frame

I3Frame.Physics
I3Module.
Physics(frame):
 # add code here that pulls
 # data from the frame, does
 # something interesting and
 # puts data back in the frame

When a Physics frame goes by the Physics methods
of all downstream modules get called and the frame
passed to it.

IceTray : Frame Splitting
Original IceTray Stream (pre-Q-frames)

G
 C
 D
 PPPPPPPPPPP...

Introduction of Q (DAQ frames)
Driven by SLOP Trigger (Slow Monpole)
Slow Monopoles can take ms to traverse the detector
G
 C
 D
 Q Q Q Q ...
 P P P P ...

Q Frames would contain Triggered (i.e. DAQ) information.
The reconstructions would stay in P frames.

What about the many muons now embedded in a single Q/P
frame? Lots of reconstruction modules had already been written
assuming a single particle and work great w/ SMT8.

IceTray : Frame Splitting
Original IceTray Stream (pre-Q-frames)

G
 C
 D
 PPPPPPPPPPP...

Introduction of Q (DAQ frames)
Driven by SLOP (if memory serves)
Slow Monopoles can take ms to traverse the detector
G
 C
 D
 Q Q Q Q
 PPPPP PPPPPP PPPPP PPPPPPPPPPPPPP

I3TriggerSplitter splits single P-frames
depending on the desired trigger.

https://docs.icecube.aq/combo/trunk/projects/trigger-splitter/index.html

https://docs.icecube.aq/combo/trunk/projects/trigger-splitter/index.html

IceTray : Frame Packets and I3PacketModule
Introduction of Q (DAQ frames)

Driven by SLOP
Slow Monopoles can take ms to traverse the detector
G
 C
 D
 Q Q
 PPPPP PPPPPP

Potentially essential for anyone
wanting to deal with InIce/IceTop
reconstructions.

IceTray : Tray Segments

TriggerSim Segment
IceCube triggering system applies four independent triggering algorithms.

It combines the results to generate a global trigger, removes launches outside the
readout window, and shifts the time of the objects to make them look like data.

You can re-trigger your data the "standard" way with two lines in your script:
 from icecube.trigger_sim import TriggerSim
 ...
 tray.Add(TriggerSim, gcd_file = dataio.I3File(<path_to_GCD>))

IceTray History Lesson

From 2008 - Present...

Why? Because lots of production scripts haven't
been updated in more than 12 years.

IceTray : Pre-2008

Very non-pythonic.
● Call ‘load’ explicitly.
● Odd AddModule signature.

*Still lots of production scripts and segments
that haven’t been cleaned up in over 12 years.

IceTray : Pre-2012

Import IceCube projects the python way.

Pythonic signature with keyword arguments.

IceTray : Post-2013
Cleanups

● Just 'Add'
● Anonymous I3Modules - No need to include a name.
● No need to add “TrashCan” Module.
● Need to call “Finish” explicitly.

The Simplest IceTray Chain
I3InfiniteSource is a C++ module
located in the dataio project.

IceTray : Functions as IceTray Modules

IceTray : Lambda as ‘Modules’

Very simple filter.

If function returns True, the
frame is passed to the next
module.

Tray Segments

Group several ‘modules’
and functions together to
form something that can
plug into IceTray.

I3Module : Post-Modern Classic - Pre-2017

I3Module : Post-Modern Classic - Post-2017

This is now the simplest IceTray module that works, but does absolutely nothing useful.

You don't have to implement a Configure method if it doesn't need one.

You don't have to explicitly add an OutBox anymore. The default works just fine for >99% of
modules in production.

I3Module :
Post-Modern Classic

Example of a fully-working
icetray chain that does
absolutely nothing.

The best we can say about
this is that it will execute
without throwing.

Simplest illustration of most
concepts up to this point.

I3Module: Parameters Parameters defined with 'AddParameter' become
keyword arguments when added to an I3Tray
instance.

 tray = I3Tray()
 tray.Add(ExampleModule, some_param = 32)

IceTray Services: Options

1) As a parameter.
2) From the context.

IceTray
Services

Two Options
1) Parameter
2) Context

No need for service
factories anymore

NOTE 1: You still might see "service
factories" in production scripts.

Old, complicated way to install a
service in a context.

IceTray
Services

Two Options
1) Parameter
2) Context

No need for service
factories anymore

NOTE 2: When writing post-modern
classic I3Modules, DO NOT forget to
"push the frame." Failure to push the
frame effectively filters it from the stream.

Services

Two Options
1) Parameter
2) Context

Generate 10 frames.

Tack on an I3Writer
to generate an I3File.

$ dataio-pyshovel bootcamp_example.i3.bz2

dataio-pyshovel Example

Exercises

In Madison:
cp /home/olivas/bootcamp.py .

Outside Madison:
scp -S ssh <username>@data.iceceube.wisc.edu:/home/olivas/bootcamp.py .

1) Add an I3Particle neutrino primary to the
tree.

2) Add an I3Particle muon as a secondary.

3) Randomize the muon energy.

4) Change the filter to only pass frames
with muon energy above 300 GeV

5) Implement a DAQ for ExampleModule
method that prints the tree.

