The radio detection method for high energy neutrinos

Albrecht Karle (Univ. of Wisconsin-Madison)

Development of an cosmic ray induced shower in a dens medium.

Length of shower (X_max) ~ Log(E), ~5 m Width: ~0.1 m

MIT Cosmic rays group, 1933.

http://pdg.lbl.gov/2008/AtomicNuclearProperties/HTML_PAGES/325.html

Atomic and nuclear properties of materials: Water (ice) (H_2O)

Quantity	Value	Units	Value	Units
<z a=""></z>	0.55509			
Density	0.918	g cm ⁻³		
Minimum ionization	1.996	MeV g ⁻¹ cm ²	1.832	MeV cm ⁻¹
Nuclear collision length	58.5	g cm ⁻²	63.73	cm
Nuclear interaction length	83.3	g cm ⁻²	90.77	cm
Pion collision length	86.0	g cm ⁻²	93.68	cm
Pion interaction length	115.2	g cm ⁻²	125.5	cm
Radiation length	36.08	g cm ⁻²	39.31	cm
Critical energy	78.99	MeV (for e)	76.90	MeV (for e^+)
Molière radius	9.69	g cm ⁻²	10.55	cm
Plasma energy $\hbar \omega_p$	20.57	eV		
Muon critical energy	1035.	GeV		
Melting point	273.1	K	0.000E+00	С
Boiling point @ 1 atm	373.1	K	99.96	С
Index of refraction (@ STP, Na D)	1.31			
Composition:				

 Elem
 Z
 Atomic frac*
 Mass frac*

 H
 1
 2.00
 0.111894

 O
 8
 1.00
 0.888106

 * calculated from mass fraction data.

Explanation of some entries

For muons, dE/dx = a(E) + b(E) E. Tables of b(E): <u>PS PDF TEXT</u> Table of muon dE/dx and Range: <u>PS PDF TEXT</u> Note: Index of refraction of liquid water is 1.333

The Askaryan effect - the idea

High energy showers produce radio waves in dense dielectric Media. Why?

2 pieces of the effect:

• Showers in matter will have ~15% charge asymmetry due to Compton Scattering: $\gamma + e_{H,O} \rightarrow e^{-}$

Positron annihilation: $e^+ + e^-_{H_{2O}} \rightarrow \gamma$

Emission region: thin pancake particles of 20 cm in diameter moving at vac. speed of light.

Gurgen Askaryan

• Small shower size: E-fields add coherently!

$$\lambda >> R_{moliere} \rightarrow P \propto N_{particles}^2$$

Ice: R~10 cm, v_{peak} ~1 GHz

(Power ~ sqr(El. Field), in that direction)

Angular distribution for different frequencies

1e-07 1 TeV 1 GHz 500 GeV 1 GHz 100 GeV 1 GHz 300 MHz 300 MHz GeV 1e-08 R x E(nu) in Volts/MHz 1e-09 1e-10 30 55 60 65 70 75 35 40 45 50 80 Angle in Degrees

Emission up to +- 5° off the

Cherenkov angle

Emission pattern at different fequencies

see eg.: J. Alvarez-Muniz et al., Astrop. Phys. 35 (2012) 287-299 and references therein

South Pole glacial ice: cold and RF transparent

- Thickness: 2800m
- Temperature: -55°C at top, -40°C at 1500m
- Attenuation length at 300MHz (0-1500m): ~ 1.5km
- Low noise

Ground penetrating radar (350MHz) image of Antarctic ice sheet

ARA Station

ARA DAQ

To surface electronics

Opticaul

ZONU

transmitter

LNA

Votch filter

lotch filter

Notch filter

In ⁻

- Notch filter at 450 MHz (anthropogenic noise)
- Low noise amplifiers
- Optical RF analog over tiber (Zonu)

antennas

4

detector string:

Ξ

X 4

Trigger rates:

- ~ 5 Hz RF events
- 1 Hz Calibration pulser
- 0.5 Hz Forced software trigger

Askaryan Radio Array: 2017/18 upgrade

- Major maintenance on stations 1, 2 and 3.
- Repaired power system

 (now just passive cables to IceCube lab)
- 3. Deployed 2 new stations (40m baseline up from 20m)
- Deployed Phased Array in ARA station 5. Integrated in trigger and readout.

Installation of ARA

Geometry Optimization:

Better performance for larger geometry.

Energy 10¹⁸ eV

Size	Passing Rate	Azimuthal Resolution
20 m	8.14 x 10 ⁻⁴	0.14°
40 m	1.082 x 10 ⁻³	0.10°

 Passing Rate and angular resolution increases as we increase the baseline size

Calibration

There is no physics background like in water/ice Cherenkov neutrino detectors: No muons, no atmospheric neutrinos! Only thermal noise and man made backgrounds.

 \rightarrow ARA uses various radio pulsers:

- Local pulser antennas, embedded with detector
- Deep pulser (1500m) deployed with IceCube
- Pulser on IceCube lab building
- Portable pulsers from the surface

Calibration

Pulser on rooftop of the IceCube Lab.

Distance: 4 km

Propagation of radio signals in the ice

ray traces from200m

Visibility of neutrinos with one station.

Simulated events triggering ARA station at 200m

10¹⁶eV Triggered Vertex Position

Depth and effective volume at South Pole.

Simulated neutrino events triggering ARA station at 200m

10¹⁷eV Triggered Vertex Position

Depth and effective volume at South Pole.

Simulated neutrino events triggering ARA station at 200m

10¹⁸eV Triggered Vertex Position

Depth and effective volume at South Pole.

Simulated neutrino events triggering ARA station at 200m

10¹⁹eV Triggered Vertex Position

SpiceCore:
4 inch borehole to 1700m.
First measurements:
→ Poster by Michael DuVernois

Courtesy IceCube and NSF

Deep Pulser data

Pulser at 1500m depth, 4km distance as observed with ARA stations.

Double pulses observed as expected (in hindsight): Will allow precise reconstruction of vertex distance, thus energy.

Reconstruction of pulser signal at 4 km distance

Deep pulser event Reconstruction using interferometric analysis.

Lowering trigger threshold with Phased Array of Antennas

4 years of 2 ARA stations.

Fig. 2. Fractional livetimes for A2 (left) and A3 (right) from deployment in 2013 through the end of the analysis period in 2016. From the 4 years of deployment, roughly 3 years are analyzable due to intermittent downtimes.

Effective volume of an ARA station.

Fig. 3. The simulated trigger-level effective area-steradian $([A\Omega]_{eff})$ for ARA stations A2 and A3, averaged across configurations.

Data (left) and signal simulation (right)

Cut variables:

C_sky: a cross correlation parameter

SNR: Signal to Noise Ratio

Fig. 4. An example of the bivariate cut plane, for which the final 2-D box cut is made for A3 configuration 3. (Left) The plane as observed in 10% "burn-sample" data, showing events clustering at low-correlation and low-SNR. (Right) The plane populated with simulated neutrinos at 10^{18} eV, showing events distributed throughout. Events at low-correlation and low-SNR are cut; events at higher values define the signal region, and pass the analysis.

Recent result from ARA: diffuse neutrino search based on 2 stations x 4 years of data.

Future vision - Gen2 radio array

200 stations

~500 km^2

RNO-G (Greenland) first deployment summer 2020

Future vision:

Sensitivity of a large radio component as part of a future array.

Summary

- 5 station ARA array at Pole is taking data, is producing results and has more science potential.
- Lots of progress in understanding of ice.
- Phased array addition important step to lowering threshold.
- Near future: RNO array in Greenland (not discussed today), further future: IceCube-Gen2 radio array.
- Radio technique is the most promising method to explore the neutrino sky at highest energies (1E16 to 1E19 eV).

Multi-component observatory:

- IceCube-Gen2 High-Energy ArraySurface air shower detector
- •Sub-surface radio detector

Surface Area: ~6.5km² (0.9) Instrumented depth: 1.26 km (1.0)

Instrumented Volume: 8 km³

Order of magnitude increase of contained event rate at high energies.

Cost: order \$400M

Target sensitivity at high energies - beyond RNO

Radio component of IceCube-Gen2 sensitivity, scale, 5x RNO.

Sensitivity vs energy

ARA 5 station array: expected neutrino event rates

Diffuse

Sources

World's best neutrino telescope above 10¹⁷ eV by 2022

Vertex Reconstruction – Deep Pulser

- Can reconstruct deep pulser position in 4 Km distance within 10%
- Confirms understanding dignalpropagation of the south pole ice

Vertex reconstruction - direction

• Simulated neutrino events at 10¹⁸eV, neutrino vertices randomly scattered around an ARA station, up to 5km

True Vertex Distance: 2581m						
	True	Reco	Diff.			
Zenith	102.74°	102.94°	0.2°			
Azimuth	222.69°	222.89°	0.2°			