OREILLY"

Software Best

Practices
Effective Version Control

Becoming
Alex Olivas a Better
Madison Bootcamp 2020 PrOgrammer

A HANDBOOK FOR PEOPLE WHO CARE ABOUT CODE

https://amzn.to/211YydH S PEEGOONIR

https://amzn.to/2I1YydH

The Zen of Python : When in doubt “import this”

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one— and preferably only one —obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Nameipaces are one honking great idea — let's do more of those!
>>>

The Zen of Python : When

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.

Sparse is better than dense.
Readability counts.

Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one— and preferably only one ——obvious

in doubt “import this”

Readability counts.

Commit to a style guide

https://gooqgle.github.io/styleguide/pyquide.html

Use a tool to enforce a style, e.g. pylint.

Don't rely solely on documentation

way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.
Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

General Rule: "Don't leave to
documentation what the compiler or

If the implementation is easy to explain, it may be a good idea. runtime System can enforce."
Namespaces are one honking great idea — let's do more of those!

>>> i

Example: GitHub Actions for Pylint

https://qgithub.com/marketplace/actions/qithub-action-for-pylint

https://google.github.io/styleguide/pyguide.html
https://github.com/marketplace/actions/github-action-for-pylint

Effective Version Control

Central Collaboration Hub

Feeds CI, Release Engineering, Code Audit systems
Facilitates Software Archaeology

Provides Backups

Fosters Rhythm and Cadence (i.e. Workflow)
Enables Concurrent Development Streams

Getting Started w/ GitHub

Use it or Lose it! https://agithub.com/

Username

Built for
developers %

CitHub is a development platform msplred by the Make sure it's at least 15 characters OR at least 8 characters
way you work. From open source to business' you including a number and a lowercase letter. Learn more.

can host and review code, manage projects, and

build software alongside 36 million developers. Sign up for GitHub

https://github.com/

Effective Version Control
What to Store?

Two options
Store Everything

e Store EVERY file that's required to recreate your result.

e Source code, docs, build files, configuration files, assets, third party libs.
e Strive for 'turn-key' after checkout.

Store as Little as Possible

e Keep it slim and simple

e Exclude compiled code, cmake generated files, byte-compiled python, etc...
e No development tools or OS image

Do Both! They're not contradictory.

Effective Version Control

Making Releases - https://help.qgithub.com/en/articles/creating-releases

Generating DOIs - https:/guides.qithub.com/activities/citable-code/

= E] olivasalex / bootcamp_2019

Code Issues 0 Pullrequests 0 Projects 0 Wiki Security Pulse Community

There aren’t any releases here

Releases are powered by tagging specific points of history in a repository.
They're great for marking release points like v1.0 .

Create a new release

https://help.github.com/en/articles/creating-releases
https://guides.github.com/activities/citable-code/

Effective Version Control

Semantic Version Numbers - https://semver.org/

Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards-compatible manner, and

3. PATCH version when you make backwards-compatible bug fixes.
Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH
format.

https://semver.org/

Effective Version Control

Repository Layout

Invest time in a clear, easy to navigate layout.

README. rst :
LICENSE Prefer a stan.dard layout to .make it easy for
setup.py others to navigate your project. Increases
requirements. txt adoption.

sample/__init__.py
sample/core.py
sample/helpers.py
docs/conf.py
docs/index.rst
tests/test_basic.py
tests/test_advanced.py

For python projects prefer virtual environments
$ python3 -m venv my_virtual_env

$ source my_virtual_venv

$ pip install <some_lib>

$ pip freeze > requirements.txt

$ pip install -r requirements.txt

https://docs.python-quide.ora/writing/structure/

https://docs.python-guide.org/writing/structure/

Effective Version Control

Make Small, Atomic Commits
"Commit early, commit often."

e Make the commits small enough that they don't break the code. What
constitutes "broken" code? - Doesn't compile. Tests don't pass.
e DO NOT commit something that covers more than one change: "git commit -m
'Refactor and critical bugfix' " BAD
e DO NOT wait until the end of the day or week to commit.
DO NOT mix functional changes with whitespace cleanups.
e DO write good commit messages.
o Good commit message: "Fixes issue #123: Use std::shared_ptr to avoid
memory leaks. See C++ Coding Standards for more information."
o Bad commit message: "blerg"

Effective Version Control

Make Quality Commits - Don't break the build!!!

Make change
Test that it builds against master/trunk

Ensure all the tests PAasSsS. (Invest in a test suite!!! e.g. python unittest)
Check it in w/ an informative commit message.

Check your continuous integration (Cl) system.

aRrowh =

Measure test coverage with
pycoverge and display this
in README.md

Advice: Prefer short-lived

Effective Version Control | wake smai stomic commi

Make small atomic commits
that don't break the build.

https://quides.qgithub.com/introduction/flow/

ADD COMMITS DISCUSS AND REVIEW

.....................

.....................

CREATE A OPEN A PULL

MERGE AND
BRANCH REQUEST DEPLOY
Createabranchinyour Usea pullrequest to get Merge your changes into
project whereyoucan feedback onyour changes your master branch and
safely experiment and from people down the hall deploy your code.
make changes.

or ten time zones away.

https://guides.github.com/introduction/flow/

Exercise: Getting Started w/ GitHub

Use it or Lose it! https://github.com/

Add example code from yesterday.

(@)

Overview Repositories Projects Stars Followers Following

ooooooooooooo

Code to hold bootcamp code

\\\\\\\\\\\

a

ttttt

\

Click on NEW to
create a new
repository.

$ git clone https://github.com/<username>/<repo_name>

$ git add <filename>
$ git commit -m 'initial commit'
$ git push

https://github.com/
https://github.com/

