
Software Best
Practices

Effective Version Control

Alex Olivas
Madison Bootcamp 2020

https://amzn.to/2I1YydH

https://amzn.to/2I1YydH

The Zen of Python : When in doubt “import this”

The Zen of Python : When in doubt “import this”

Readability counts.

Commit to a style guide
https://google.github.io/styleguide/pyguide.html

Use a tool to enforce a style, e.g. pylint.

Don't rely solely on documentation

General Rule: "Don't leave to
documentation what the compiler or
runtime system can enforce."

 Example: GitHub Actions for Pylint

https://github.com/marketplace/actions/github-action-for-pylint

https://google.github.io/styleguide/pyguide.html
https://github.com/marketplace/actions/github-action-for-pylint

Effective Version Control

Central Collaboration Hub
Feeds CI, Release Engineering, Code Audit systems
Facilitates Software Archaeology
Provides Backups
Fosters Rhythm and Cadence (i.e. Workflow)
Enables Concurrent Development Streams

Getting Started w/ GitHub
Use it or Lose it! https://github.com/

https://github.com/

Effective Version Control
What to Store?
Two options
Store Everything
● Store EVERY file that's required to recreate your result.
● Source code, docs, build files, configuration files, assets, third party libs.
● Strive for 'turn-key' after checkout.

Store as Little as Possible
● Keep it slim and simple
● Exclude compiled code, cmake generated files, byte-compiled python, etc...
● No development tools or OS image

Do Both! They're not contradictory.

Effective Version Control
Making Releases - https://help.github.com/en/articles/creating-releases

Generating DOIs - https://guides.github.com/activities/citable-code/

https://help.github.com/en/articles/creating-releases
https://guides.github.com/activities/citable-code/

Effective Version Control

Semantic Version Numbers - https://semver.org/

https://semver.org/

Effective Version Control

Repository Layout
Invest time in a clear, easy to navigate layout.

https://docs.python-guide.org/writing/structure/

Prefer a standard layout to make it easy for
others to navigate your project. Increases
adoption.
For python projects prefer virtual environments
$ python3 -m venv my_virtual_env
$ source my_virtual_venv
$ pip install <some_lib>
$ pip freeze > requirements.txt
$ pip install -r requirements.txt

https://docs.python-guide.org/writing/structure/

Effective Version Control
Make Small, Atomic Commits
"Commit early, commit often."
● Make the commits small enough that they don't break the code. What

constitutes "broken" code? - Doesn't compile. Tests don't pass.
● DO NOT commit something that covers more than one change: "git commit -m

'Refactor and critical bugfix' " BAD
● DO NOT wait until the end of the day or week to commit.
● DO NOT mix functional changes with whitespace cleanups.
● DO write good commit messages.

○ Good commit message: "Fixes issue #123: Use std::shared_ptr to avoid
memory leaks. See C++ Coding Standards for more information."

○ Bad commit message: "blerg"

Effective Version Control

Make Quality Commits - Don't break the build!!!
1. Make change
2. Test that it builds against master/trunk
3. Ensure all the tests pass. (Invest in a test suite!!! e.g. python unittest)

4. Check it in w/ an informative commit message.
5. Check your continuous integration (CI) system.

Measure test coverage with
pycoverge and display this
in README.md

Effective Version Control
https://guides.github.com/introduction/flow/

Advice: Prefer short-lived
branches - days not months.
Make small atomic commits
that don't break the build.

https://guides.github.com/introduction/flow/

Exercise: Getting Started w/ GitHub
Use it or Lose it! https://github.com/
Add example code from yesterday.

$ git clone https://github.com/<username>/<repo_name>
$ git add <filename>
$ git commit -m 'initial commit'
$ git push

Click on NEW to
create a new
repository.

https://github.com/
https://github.com/

