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Outline

● A quick probability review

● Statistical inference in general
○ Bayesian methods
○ Frequentist methods

● Examples!
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Probability & Statistics
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● Consider a coin.

● The probability of landing on heads or tails is 50%

● Suppose the value C depends on the outcome of the coin toss, then C is a random variable
● The random variable C is governed by a probability distribution, which we call T and can be written as T(w)
● Where T(w) represents the weighted coin distribution and is parameterized by w

Probability
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● The T(w) distribution in the previous slide also goes by another name, the Bernoulli distribution, and is used to 

describe the discrete probability of a binary result (0/1 or heads/tails)

● Bernoulli processes are rare in nature. A more common process is one governed by the Poisson distribution, 

which describes the probability of seeing X events in a given period of time.

● In this case if we examine an interval t with an event rate r, then we expect λ=rt events in the interval.

Discrete Distributions
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● All probability distributions are normalized

● The mean of a distribution (sometimes called average, but that’s less precise), found by summing over all 

possible outcomes

● The act of summing over all outcomes is called calculating an expected value

● The variance is a measure of “spread” of distributions, it is the average squared amount that the random 

variable X deviates from the mean

Discrete Distributions (cont.)
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Poisson Distribution
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Continuous Distributions

Discrete distributions defined over countable sets. Continuous distributions are defined on uncountably infinite 

sets, usually the set of real numbers

Our normalization condition is thus

where if x has units of L, then p(x) has units of 1/L.

The most common example is the normal distribution
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Joint & Conditional distributions

Suppose we have two random variables, X and Y. If these are independent, then

This is the joint probability distribution of X and Y. If distributions are not independent, we cannot factor like this

If we want to isolate the probability of one of the variables, we can marginalize:
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Joint and Conditional, cont’d.

If X and Y are correlated, we can decompose the joint into a product of different distributions, one separate and one 

conditional

The first term on the left is read as probability of X = x given that Y = y. 

We can now treat the parameter of a distribution as a random variable, for example, if

then we can write the probability distribution as

As this notation is cumbersome, we often just write
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Inference:
Bayesianism and Frequentism
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Data, Models, and Likelihoods

● Running experiments allows us to collect data

● Proper statistical modelling is key to the interpretation of data
○ What data are you measuring?
○ What is your statistical process?
○ What distribution describes your data?
○ What is your model of the physics?

● With a model in mind, we can discuss the probability of observing our data 
(d) given the model (θ)

● Often we use a different notation, the likelihood, because we only have one 

set of data are more concerned with what the model parameters may be.

● Note however that the notational difference is also to avoid confusion with 

the probability of a parameter

● Generally the dependence on data is dropped for convenience
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Many Measurements

● Independent measurements → product of probabilities

● Notationally we can simplify this
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Bayesian Methods
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Bayesian Inference

Model parameters are random variables

● Bayes theorem of conditional probability

● P(θ|d) = Posterior Distribution

● P(d|θ) = Likelihood

● P(θ) = Prior

● P(d) = Normalization Factor

● The “Prior” represents our prior knowledge of the parameters

● The “Likelihood” is our statistical model

● Combining these helps us to learn something about the data

● The “Posterior Distribution” is the probability of the 

parameters after adding knowledge of the observed data
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Posterior Distribution

● The posterior distribution provide us with a picture of 

the parameters combining prior information and our 

observations

● However, there are two issues
○ We don’t know the normalizing constant

○ We may not care about all the parameters

● Solution to both these problems is the same

● Integration!

● Normalization is achieved by integrating over all 

parameters

● Nuisance parameters η are integrated out

● This produces the marginal posterior distribution
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Priors

● Say we don’t have any good external 

measurements for a prior

● Consider the integral on the right →
● We don’t want to be “biased”

● Maybe we choose a uniform prior (1/L) to 

do this

● Problem: what is uniform in one variable is 

not uniform in another

● The same prior is now not uniform
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Parameter Estimation

● In Bayesian statistics we deal with posterior probabilities so we can ask what value 
of θ is most probable?

● We can select the maximum value in the marginal posterior
● This is called the maximum a posteriori (MAP) estimator

● The MAP is indicated by the dashed line
● But this is clearly not the full picture...
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Credibility Regions

● Better to report an interval where most of the probability lies
● Want an interval C(𝜶) that contains a fraction 𝜶 of the probability
● Many ways to construct the interval C(𝜶)

● Highest Posterior Density (HPD) is one way
● Choose only points above a threshold
● In this example 𝜶=68.3%
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Model Tests

● Recall from Bayes theorem →
● Compare models by ratio of probabilities

● The ratio of P(d|M) is called the Bayes factor

● P(d|M) is the “evidence”

● The evidence is the integral of the posterior over 

all parameters
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● Model parameters are random variables

● Need priors

● Derive probability of model parameters with 

posterior distribution

● Parameter estimation:
○ Maximum a posteriori (MAP) estimator

● Interval construction:
○ Credibility Interval (C.I.)
○ Highest posterior density (HPD) region

● Model testing:
○ Bayes Factor
○ Evidence Integral

Bayesian Summary

Computational concerns

● Computing integrals analytically can be hard

● Primary technique: Markov Chain Monte Carlo 

(MCMC)

● MCMCs create a list of parameter space points

● Density of parameter space points is proportional 

to the posterior distribution

● MAP and HPD can be computed quickly from this 

information

● Evidence integrals require separate but related 

techniques

● Sampling techniques must be chosen with care 

for tricky posterior landscapes

● Check that your posterior is well contained if you 

use improper priors!
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Frequentist Methods
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Frequentist Approach

Model parameters are not random variables

● Cannot discuss “probability of model parameters”

● Instead discuss “probability of an outcome” assuming these model parameters

Recall the coin toss:

If you throw a large number of coins, the fraction that have heads will be approximately 𝛽

The probability of observing a fraction of heads far away from 𝛽 is small
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Test Statistics

● Central to frequentist statistics is the test-statistic (TS)

● The TS summarizes our observations

● Example TS for the coin toss: toss the coin n times, observe k heads

● In this case a smaller TS means closer to expectation

The 𝜒2 test statistic The Likelihood Ratio TS
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Test Statistics

● For a particular value of the parameters there is a TS distribution

● How rare a TS value is can be answered by asking how likely a TS is to fall 

within a certain region
○ Usually the region greater than the observed TS

● Plot shows the TS for a p
value

 of 0.05

● Rare event ⇒ Small p
value

25



Parameter Estimation / Confidence Regions

● Best-fit parameters are obtained by maximizing the likelihood or 

equivalently minimizing the TS

● This provides an estimator for the parameters
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● Intervals are constructed as observables

● For any fraction 𝜶 and TS distribution, a range of TS values can 

be found satisfying

● It is possible to construct an observable with these properties

● As well as an interval

● For repeated observations C will contain the true value of θ 

some for a fraction alpha of observations

Parameter Estimation / Confidence Regions
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● Note that the observed TS, TS distribution, and TS
1

 depend on the parameters

● This means it necessary to compute the TS distribution for each parameter value

Parameter Estimation / Confidence Regions
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● Note that the observed TS, TS distribution, and TS
1

 depend on the parameters

● This means it necessary to compute the TS distribution for each parameter value

● However, the TS distribution can often be approximated as 𝜒2 distributed if the conditions of Wilks’ theorem 

are satisfied

Parameter Estimation / Confidence Regions
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Likelihood Ratios and Model Selection

● Given two models H
0

 and H
1

(θ) such that H1 contains H0 as a specific point in the 
parameter space

● The Neyman-Pearson lemma states that the likelihood ratio test statistic has the 
strongest statistical power while having the lowest probability of false positives

● The p-value for model tests can be computed in the same manner as described previously
● By comparing the observed TS to the TS distribution of the Null hypothesis
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Wilks’ Theorem

● The profile likelihood test statistic is 𝜒2 distributed if the 
models satisfy the following conditions

● Asymptotic: The number of measurements tends towards 
infinity

● Interior: The true values of the parameters lie within the 
allowed bounds

● Identifiable: Each value of the parameters specifies a 
different model

● Nested: The null hypothesis is contained within the 
parameter space of the alternative hypothesis

● Correct: The model completely and correctly describes the 
underlying truth

● These conditions are often violated
● https://arxiv.org/abs/1911.10237 discusses when this okay, 

and what can be done to correct for differences or achieve 
a TS distribution closer to the asymptotic approximation
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Frequentist Summary

● Model parameters are fixed in reality but 

unknown

● Data is a set of random variables

● Derive probability of observation

● Parameter estimation
○ Maximum likelihood technique

● Interval construction
○ Comparison to TS distributions
○ Probability that interval contains true parameter 

under repeated experiments

● Model testing
○ Likelihood ratio TS
○ Comparison to TS distribution

Computational concerns

● TS distributions can be expensive to compute for 

high significance results

● Number of TS distributions needed grows 

exponentially with the number of parameters 

examined

● Wilks’ theorem is your saving grace

if it applies
● Finding a global minimum can be non-trivial!

● Minimization techniques must be chosen with 

care for tricky TS landscapes
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Examples
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Example 1: Neutrino counts

Suppose we have a neutrino source and we want 

to know its flux

We take 50 independent measurements and want 

to make an estimate for the true flux, Ftrue

Each of our measurements, Fi, has some 

measurement error, ei (assume ei = Fi
1/2)
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Example 1: Frequentist approach

We want to extremize our likelihood, 

where

Maximizing the likelihood is the same as maximizing the log-likelihood

If the errors are equal, this just means calculate the arithmetic mean. It can be shown that the error on this estimator 

is
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Example 1: Frequentist approach

In code:
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Example 1: Bayesian approach

We want the maximum a posteriori probability estimator, by 

calculating the posterior

To do this, we use Bayes’ Theorem

Because we know nothing about the source, we want an 

uninformative prior. If we use a flat prior, then we notice that

But this is the exact same result we got in the frequentist case...
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Example 2: Bayesian Billiards

Alice and Bob enter a room with a table hidden behind a 

curtain

First, Carol picks a spot on the table (randomly). 

Then, Carol picks other spots on the table. If they are to 

the left of the first spot, Alice gets a point. If they’re on 

the right, Bob gets a point. First to 6 wins.

Assume you do not know where the dividing line is

Given that after 8 rolls, Alice has 5 points and Bob has 3, 

what is the probability that Bob will go on to win the 

game?

The first spot is a nuisance parameter: not relevant to the 

goal of the analysis, but necessary to take into account

Alice Bob(5) (3)
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Example 2: Frequentist approach

What’s the best guess at the probability that any given roll will land on Alice’s side?

What’s the probability that Bob will win the next 3 rolls before Alice wins one (if the probability of each roll is 

⅝ in favor of Alice)?

So Alice is about 18 times more likely than Bob to win
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Example 2: Bayesian approach

We want to find 

We accomplish this by the process of marginalization, or integrating the joint probability,

Expand the integrand using the definition of conditional probabilities

Use Bayes’ theorem to rewrite the second term in the integrand

And then we are left with the not-so-pretty (but very manageable)
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Example 2: Bayesian approach

Frequentist likelihood. Given a marker placement, p, and the fact Alice won 5 rolls, what 

is the probability that Bob will go on to six wins? (1-p)3

Given a probability p, what is the likelihood of 5 Alice wins and 3 Bob wins?  p5(1-p)3

Prior on the probability p. From the problem definition, p is evenly sampled

After making Python do these integrals (they’re Beta functions), we get

So Alice is 10 times more likely to win, not 18 times . . . 41



Okay, but who is right?

Let’s check. We will play 100000 games, so we sample 100000 “first rolls” and recognize each game will have at most 

11 more rolls
Then, figure out which games have Alice with 5 points and Bob with 3 after 8 rollsOnly keep these games, count how many Bob ends up winningFind out who was right
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Example 2: Discussion

The naive maximum likelihood approach (frequentist) led us astray. Why?

Frequentism is not necessarily wrong, this is more of an example of the naivety of the approach. The difficulty is that in 

Frequentist approaches, it is difficult to deal with nuisance parameters in non-Bayesian ways

Also, the question itself was more posed for a Bayesian answer: Frequentists might instead hope to give the answer 

in terms of null tests or confidence intervals, which might be classically accurate, but doesn't quite answer the 

question at hand.
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Example 3: Confidence vs. Credibility

This example highlights the main difference between the questions Frequentists and Bayesians are answering

Frequentists: probability is a measure of the frequency of (perhaps hypothetical) repeated events

Bayesians: probability is a measure of the degree of certainty about values

As a result of this:

Frequentists: consider model parameters to be fixed and data to be random

Bayesians: consider model parameters to be random and data to be fixed
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Example 3: 95% intervals for a Gaussian mean

Unbiased estimate of the mean and standard error 

of the mean given by

It can be shown that 

Frequentist: Confidence interval Bayesian: Credible region

So our confidence interval is

So our posterior is the same as the sampling 

distribution in the frequentist case. It follows that

Given our observed data, there is a 95% probability 
that the true value of μ falls within CRμ

There is a 95% probability that when I compute CIμ from 
data of this sort, the true mean will fall within CIμ.
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Example 4: Jaynes’ Truncated Exponential

Suppose we build some DOMs for Gen-2, and cover them in protective coating that assures full functionality for a time 
period, θ (but we don’t know the value of θ). After this time period, failures occur according to an exponential

Suppose we want to make a guess at what θ 
is, by observing some failures
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Example 4: Frequentist approach

Start by noticing that we can calculate the expectation of the distribution

And then standard error of the mean as before

And 95% containment means +- 2 standard errors
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Example 4: Bayesian approach

For the Bayesian solution, start with Bayes’ Theorem

Plugging in our likelihood gets us

And our credible region is then 

Then,  integrate to our desired level (f=0.95)

Solving this gives us our lower bound
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Example 4: Comparisons

I’m not saying Frequentists are wrong, I just picked an example where they disagreed. The limits do have the 

proper coverage (ie in 95% of cases, the CI constructed does contain the true value)
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Summary

I am not saying that one interpretation is better than the other. They answer different questions.

- Frequentists make statements about ensembles of constructed intervals (where your constructed interval is just 

one sample from this ensemble)

- Bayesians make probabilistic statements about fixed intervals.

- You cannot interpret a frequentist confidence interval in the same way that you would a Bayesian credible 

region (this is a common mistake)

When used correctly, both sets of statistical tools can be used to effectively interpret data

Both frequentist and Bayesian techniques have their own computational challenges. Be sure that you check which 

one is feasible for your situation.

Do you have reasonable priors available? How many parameters do you have? Is the likelihood/posterior space 

smooth or horrible looking? Is Wilks’ theorem valid for your case? Are there other results you want to compare to? 

How expensive is your likelihood evaluation? What kinds of computing resources do you have access to?
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